il \%
Inﬁ#cﬁon to Embedded Systems @

A device driver accesses a parallel or serial port, keyboard, mice, disk, network, display, file, pipe and
socket at specific addresses. An OS also provides device driver codes for system-port addresses and for
hardware access mechanisms.

A device manager software provide codes for detecting the presence of devices, for initializing these and
for tesung the devices that are present. The manager includes software for allocating and registering port (in
fact, it may be a register or memory) addresses for the various devices at distinctly different addresses, including
codes for detecting any collision between these, if any. It ensures that any device accesses to one task only at
any given instant. It takes into account that virtual devices may also have addresses that are allocated by the
manager.

An OS also provides and executes modules for managing devices that associate with an embedded system.
The underlying principle is that at an instant, only one physical or virtual device should get access to or from
one task only.

Sections 4.2.4 and 8.6.1 will describe device drivers and device management in detail. The OS also
provides and manages virtual devices such as pipes and sockets. Sections 7.14 and 7.15 describe these in
detail.

For Cesxgmng embedded-software, two types of devices are considered: physical and virtual. Physical
bes include keypad, printer or display unit. A virtual device could be a file or pipe or socket or RAM
dis f';Dewce drivers and device manager software are needed in the system. The RTOS includes device-
érs and a device manager to control and facilitates the use of the number of physical and virtual
ges in the system.

1.4.8 Software Tools for Designing an Embedded System

Tablé 1.2 lists the applications of software tools for assembly language programming, high level language
programming, RTOS, debugging and system integration.

!

Table 1.2 Software modules and tools for designing of an embedded system

Software Tools Application

Editor For writing C codes or assembly mnemonics using the keyboard of the PC for entering the
i program. Allows the entry, addition, deletion, insert, appending previously written lines or
files, merging record and files at the specific positions. Creates a source file that stores the

' edited file. It also has an appropriate name [provided by the programmer].

l 5
Interpreter For expression-by-expression (line-by-line) translation to machine-executable codes.

Compiler Uses the complete set of codes. It may also include codes, functions and expressions from
the library routines. It creates a file called object file.

Assembler For translating assembly mnemonics into, binary opcodes (instructions), that is, into
an executable file called binary file and for making a list file that can be printed. The list
file has address, source code (assembly language mnemonics) and hexadecimal object
codes. The file has addresses that reallocate during the actual run of the assembly

language program.

(Contd)

Embedded S)iems

4
Software Tools " " Application 4

]
1
Cross assembler For converting object codes or executable codes for a processor to other codes for % ther

processor and vice versa. The cross-assembler assembles the assembly codes of theg
processor as the assembly codes of the processor of the PC used in system develoﬂncnt

Later, it provides the object codes for the target processor. These codes will be dg,ones

actually needed in the final developed system. i o
Simulator To simulate all functions of an embedded system circuit including that or additional m

and peripherals. It is independent of a particular target system. It also simulates the pr;sses

that will execute when the codes of a particular processor execute. o
Source-code For source code comprehension, navigation and browsing, editing, debugging, conf@!mng
engineering software (disabling and enabling the C++ features) and compiling. ¥
RTOS Refer Chapters 8 to 10. é
Stethoscope For dynamically tracking the changes in any program variable or parameter. It demons

the sequence of multiple processes (tasks, threads, service routines) that execute aiso

records the entire time history.

Trace scope To help in tracing the changes in modules and tasks with time on the X-axis. A § t: of
actions also produces the desired time scales and the time expected to be taken for ifferent
't

Integrated development This is a development software and hardware environment that consists of sxmulatoﬁw*ith
environment editors, compilers, assemblers, RTOS, debuggers, stethoscope, tracer, emulators, ogic
analyzers, and application code burners in PROM or flash.

Prototyper This simulates ‘and does source code engineering including compiling, debuggin;ﬁ and,
browsing and summarizing the complete status of the final target system durm the
development phase. ‘

Locator* This uses a cross-assembler output and a memory allocation map and provides the étor

program output as a hex-file. It is the final step of the software design processt’ -an
embedded system.

¥ The locator program output is in the Intel hex file or Motorola S-record format.

Software tools are used to develop software for designing an embedded system. Debugging tools, such as a
stethoscope, trace scope, and sophisticated tools such as an integrated development enviro iment
and prototype development tools, are needed for the integrated development of system software and hardware.

1.4.9 Software Tools Required in Exemplary Cases

Table 1.3 gives the various tools needed to design exemplary systems.

RTOS is essential in most embedded systems to process multiple tasks and ISRs. Embedded system
medium scale and sophisticated applications need a number of sophisticated software and debugging t

Table 1.3 Software tools required in exemplary systems

Software Automatic Data Robot Mobile Adaptive Voice
Tools Chocolate Acquisition Phone Cruise Control Processor
Vending System System with
Machine® String Stability”

Editor Yes Yes Yes Yes Yes NR
Interpreter Yes NR .. Yes NR NR NR
Compiler Yes Yes Yes Yes Yes Yes
Assembler Yes Yes ~ Yes No No No
Cross Assembler NR Yes . Yes No No No
Locator Yes Yes Yes Yes Yes Yes
Simulator NR Yes Yes Yes Yes Yes
Source code engineering NR NR NR Yes Yes Yes
software
RTOS Yes MR Yes Yes Yes Yes
Stethoscope NR NR NR Yes Yes Yes
Trace scope NR NR NR Yes Yes Yes
Integrated development NR Yes Yes Yes Yes Yes
environment
Prototyper NR No " No Yes Yes Yes

Note: NR means not required. MR means may be required in a specific complex system but not compulsorily needed.

" 15 "EXAMPLES OF EMBEDDED SYSTEMS

Embedded systems have very diversified applications. A few select application-areas of embedded systems
are telecommunications, smart cards, missiles and satellites, computer networking, digital consumer electronics,
and automotives. Figure 1.9 shows the applications of embedded systems in these areas.
A few examples of small scale embedded system applications are as follows:
Point of sales terminals: automatic chocolate vending machine
Stepper motor controllers for a robotics system
Washing or cooking systems
Multitasking toys
Microcontroller-based single or multidisplay digital panel meter for voltage, current, resistance and
frequency
Keyboard controller
SD, MMI and network access cards
CD drive or hard disk drive controller

kWb

® N o

9.

10.
11.
12.

13.

14.

15.

16.
17.
18.
19.

The peripheral controllers of a computer, for example, a CRT display controller, a keyboard contreller,

a DRAM controller,a DMA controller, a L printer controller, a laser i
a disk drive controller
Fax or photocopy or printer or scanner machine
Remote (controller) of TV

Telephone with memory, display and other sophisticated features
Telecom Smart Missiles and
Cards Sateijes
- Mobile Computing - Banking - Defence
- Mobile Access - Security - Aerospace
- Communication
(a) (b) (o)

Computer Networking Digital Automotive

Systems and Peripherals Consumer
T Electronics

l

- Networking Systems -DVDs . - hcngic)s_recc;o:‘:;?cl)rSysl o

- Image processing - Set top boxes - Engine/Body Safety

- Printers - High definition TVs - Robotics in Assembly Line

- Networks Cards - Digital cameras - Car Entertainment

- Monitors and leplays e we eim e e e - CAF Multimedia .
(a (o) R R

Fig. 1.9 Applications of the embedded systems in various areas

Motor controls systems—for example, an accurate control of speed and position of the d.c. motor,
robot and CNC machine; automotive applications such as closed loop engine control, dynamic ride

control, and an antilock braking system monitor

Electronic data acquisition and supervisory control system

Electronic instruments, such as an industrial process controller

Electronic smart weight display system and an industrial moisture recorder cum controller
Digital storage system for a signal wave form or for electric or water meter reading system
Spectrum analyzer

Biomedical systems such as an ECG LCD display cum recorder, a blood-cell recorder cum analyzer,

and a patient monitor system
Some examples of medium scale embedded systems are as follows:

Embedded Sysi*ms

rinter controller a LAN con N?ller

i

lmgduction to Embedded Systems
bt

20

21.

22.
23.
24,
25.

26.
27.
28.

29.
30.

31.

32.
33.
34.
35.

36.

37

. Computer networking systems, for example, a router, a front-end processor in a server, a switch, a
bridge, a hub and a gateway

For Internet appliances, there are numerous application systems (i) An intelligent operation,
administration and maintenance router (IOAMR) in a distributed network and (ii) Mail client card to
store e-mail and personal addresses and to smartly connect to a modem or server

Entertainment systems such as a video game and a music system

Banking systems, for example, bank ATM and credit card transactions

Signal tracking systems, for example, an automatic signal tracker and a target tracker
Communication systems such as a mobile communication SIM card, a numeric pager, a cellular phone,
a cable TV terminal and a FAX transceiver with or without a graphic accelerator

Image filtering, image processing, pattern recognizer, speech processing and video processing
Video games

A system that connects a pocket PC to the automobile driver mobile phone and a wireless receiver.
The system then connects to a remote server for Internet or e-mail or to a remote computer at an ASP
(application service provider)

A personal information manager using frame buffers in handheld devices

Thin client [A thin client provides disk-less nodes with remote boot capability]. Application of thin-
client accesses to a data centre from a number of nodes; in an Internet laboratory accesses to the
Internet leased line through a remote server.

Embedded firewall / router using ARM7/ multiprocessor with two Ethernet interfaces and interfaces
support to PPP, TCP/IP and UDP protocols.

Examples of sophisticated embedded systems are as follows:

Mobile smart phones and computing systems

Mobile computer

Embedded systems for wireless LAN and for convergent technology devices

Embedded systems for video, interactive video, broadband IPv6 (Internet Protocol version 6) Internet
and other products, real time video and speech or multimedia processing systems

Embedded interface and networking systems using high speed (480 MHz plus), ultra high speed
(10 Gbps) and a large bandwidth: Routers, LANs, switches and gateways, SANs (Storage Area
Networks), WANs (Wide Area Networks)

. Security products and high-speed Network security. Gigabit rate encryption rate products

- ﬂ;e EMBEDDED SYSTEM-ON-CHIP (SoC) AND USE OF VLSI CIRCUIT

DESIGN TECHNOLOGY

Lately, embedded systems are being designed on a single silicon chip, called System on chip (SoC), a design
innovation. SoC is a system on a VLSI chip that has all the necessary analog as well as digital circuits,

proce
A

1

2

3

4

ssors and software.

SoC may be embedded with the following components:

. Embedded processor GPP or ASIP core,

. Single purpose processing cores or multiple processors,
. A network bus protocol core,

. An encryption function unit,

Embedded Systems

5. Discrete cosine transforms for signal processing applications,

6. Memories,

7. Multiple standard source solutions, called IP (Intellectual Property) cores,

8. Programmable logic device and FPGA (Field Programmable Gate Array) cores,
9. Other logic and analog units.

An exemplary application of such an embedded SoC is the mobile phone. Single purpose processors,
ASIPs and IPs on an SoC are configured to process encoding and deciphering, dialing, modulating,
demodulating, interfacing the key pad and multiple line LCD matrix displays or touch screen, storing data
input and recalling data from memory. Figure 1.10 shows an SoC that integrates internal ASICs, internal
processors (ASIPs), shared memories and peripheral interfaces on a common bus. Besides a processor,
memories and digital circuits with embedded software for specific applications, the SoC may possess analog
circuits as well.

A SYSTEM ON CHIP

[SINGLE PURPOSE ! BUSES
| PROCESSORS —‘

| DIGITAL |
| ASIPs | CIRCUITS- |

| DATA ADDRESS |

GENERATOR

PROGRAM

5 ! PROGRAM,

! ADDRESS | DATA

! GENERATOR | AND PORT .
““““““““““ MEMORY | INTERRUPT |
! CONTROLLER !
! MULTI- ! b :
! PROCESSOR |

' DSP 5

~15-20%
AREA

Fig. 1.10 ASoCembedded system and its common bus with internal ASIPs, internal processors,
IPs, shared memories and peripheral interfaces

Intro#mction to Embedded Systems

1.6.1 ‘Application Sp‘ecific‘ IC{ASIC) -

ASICs are designed using the VLSI design tools with the processor GPP or ASIP and analog circuits embedded
into the design. The designing is done using the Electronic Design Automation (EDA) tool. [For design of an
ASIC, a High-level Design Language (HDL) is used].

1.6.2 IP Core

On a VLSI chip, there may be integration of high-level components. These components possess
gate-level sophistication in circuits above that of the counter, register, multiplier, floating point operation unit
and -AkU. A-standard source solution for:synthesizing a higher-level component by configuring an FPGA
core or a core of VLSI circuit may be available as an Intellectual Property, called (IP). The designer or the
designing company holds the copyright for the synthesized design of a higher-level component for gate-level
implementation of an IP. One might have to pay royalty for every chip shipped. An embedded system may
incorporate several IPs.

e An IP may provide hardwired implementable design of a transform, an encryption algorithm or a
deciphering algorithm.
e An IP may provide a design for adaptive filtering of a signal.
"o "An IP may provide a design for implementing Hyper Text Transfer Protocol (HTTP) or File Transfer
Protocol (FTP) or Bluetooth protocol to transmit a web page or a file on the Internet.
¢ An IP may be designed for a USB or PCI bus controller. [Sections 3.10.3 and 3.12.2]

1.6.3 FPGA Core with Single or Multiple Processors

Suppose an embedded system is designed with a view to enhancing functionalities in future. An FPGA
core is then used in the circuits. It consists of a large number of programmable gates on a VLSI chip. There is
a sét of gates in each FPGA cell, called macro cell. Each cell has several inputs and outputs. All cells interconnect
like an array (matrix). Each interconnection is programmable through the associated RAM in an FPGA
programming tool. An FPGA core can be used with a single or multiple processor.

Consider the algorithms for the following: Fourier transform (FT) and its inverse (IFT), DFT or Laplace
transform and its inverse, compression or decompression, encrypting or deciphering, specific pattern recognition
(for recognizing a signature or finger print or DNA sequence). We can configure an algorithm into the logic
gates of FPGA. It gives hardwired implementation for a processing unit. It is specific to the needs of the
embedded system. An algorithm of the embedded software can implement in one of the FPGA sections and
another algorithm in its other section. _

FPGA cores with a single or multiple processor units on chip are used. One example of such core is
Xilinx Virtex-II Pro FPGA XC2VP125. XC2VP125 from Xilinx has 125136 logic cells in the FPGA core
with four IBM PowerPCs. It has been used as a data security solution with encryption engine and data rate
of 1.5 Gbps. Other examples of embedded systems integrated with logic FPGA arrays are DSP-enabled,
real-time video processing systems and line echo eliminators for the Public Switched Telecommunication
Networks (PSTN) and packet switched networks. [A packet is a unit of a message or a flowing data
such that it can follow a programmable route among the number of optional open routes available at an
instance.]

Embedded Syiems

[———

1.7 COMPLEX SYSTEMS DESIGN AND PROCESSORS

1.7.1 Embedding a Microprocessor

A General Purpose Processor microprocessor can be embedded on a VSLI chip. Table 1.4 lists different
streams of microprocessors embedded in a complex system design. g

Table 1.4 Important microprocessors used in embedded systems

Stream Microprocessor Family - Source CISC or RISC or Both features
Stream 1 68HCxxx Motorola CISC «‘ '
Stream 2 80x86 Intel CISC

Stream 3 SPARC Sun RISC 3
Stream 4 ARM ARM RISC with CISC functionagt?'

1.7.2 Embedding a Microcontroller

Microcontroller VLSI cores or chips for embedded systems are usually among the five streams of famﬂles
given in Table 1.5.

Table 1.5 Major microcontrollers® used in the embedded systems

Stream Microcontroller Family Source CISC or RISC or gﬁ
Stream 1 68HC11xx, HC12xx, HC16xx Motorola CISC § g
Stream 2 8051, 805IMX Intel, Philips CISC]
Stream 3 PIC 16F84 or 16C76, 16F876 and PIC18 Microchip CISC é; :
Stream 4 Microcontroller Enhancements of CORTEX-M3 ARM, Texas, Philips, RISC Core with ; |

ARMY/ARM?7 from Philips, Samsung and Samsung and ST CISC functlonal#g 5
ST Microelectronics Microelectronics etc. 31’ i

@ Other popular microcontrollers are as follows. (i) Hitachi H8x family and SuperH 7xxx. (ii) Mitsubishi 740, 7700, M16C and
M32C families. (iii) National Semiconductor COP8 and CR16 /16C. (iv) Toshiba TLCS 900S (v) Texas Instruments MSP 430
for low voltage battery based system. (vi) Samsung SAMS. (vii) Ziglog Z80 and eZ80

{

1.7.3 Embedding a DSP f,

A digital signal processor (DSP) is a processor core or chip for the applications that process digital signals.
[For example, filtering, noise cancellation, echo elimination, compression and encryption applications.] Just
as a microprocessor is the most essential unit of a computing system, a DSP is essential unit of an embedded

lnt#uction to Embedded Systems

system in a large number of applications needing processing of signals. Exemplary applications are in image
processing, multimedia, audio, video, HDTV, DSP modem and telecommunication processing systems. DSPs
also find use in systems for recognizing image pattern or DNA sequence.

DSP as an ASIP is a single chip or core in a VLSI unit. It includes the computational capabilities of a
microprocessor and Multiply and Accumulate (MAC) units. A typical MAC has a 16 x 32 MAC unit.

DSP executes discrete-time, signal-processing instructions. It has Very Large Instruction Word (VLIW)
processing capabilities; it processes Single Instruction Multiple Data (SIMD) instructions; it processes Discrete
Cosine Transformations (DCT) and inverse DCT (IDCT) functions. The latter are used in algorithms for
signal analyzing, coding, filtering, noise cancellation, echo elimination, compressing and decompressing, etc.

Major DSPs for embedded systems are from the three streams given in Table 1.6.

Table 1.6 Important digital signal processor® used in the embedded systems

Stream DSP Family Source

Stream 1 TMS320Cxx, OMAP! Texas

Stream 2 Tiger SHARC Analog Device
Stream 3 5600xx Motorola
Stream 4 , ’ PNX 1300, 1500° Philips

1For example, TMS320C62XX a fixed point 200 MHz DSP (Section 2.3.5).
2Media processor, which besides multimedia DSP operations, also does network stream data packet processing.

1.7.4 Embedding an RISC

A RISC microprocessor provides the speedy processing of instructions, each in a single clock-cycle. This
facilitates pipelining and superscalar processing. Besides greatly enhanced capabilities mentioned above,
there is great enhancement of speed by which an instruction from a set is processed. Thumb® instruction set
is a new industry standard that also gives a reduced code density in ARM RISC processor. RISCs are used
when the system needs to perform intensive computation, for example, in a speech processing system.

1.7.5 Embedding an ASIP

ASIP is a processor with an instruction set designed for specific application areas on a VLSI chip or core.
ASIP examples are microcontroller, DSP, IO, media, network or other domain-specific processor.

Using VLSI design tools, an ASIP with instructions sets required in the specific application areas can be
designed. The ASIP is programmed using the instructions of the following functions: DSP, control signals
processing, discrete cosine transformations, adaptive filtering and communication protocol-implementing functions.

1.7.6 Embedding a Multiprocessor or Dual Core Using GPPs

In an embedded system, several processors or dual core processors may be needed to execute an
algorithm fast within a strict deadline. For example, in real-time video processing, the number of MAC
operations needed per second may be more than is possible from one DSP unit. An embedded system
then incorporates two or more processors running in synchronization. An example of using multiple ASIPs
is high-definition television signals processing. [High definition means that the signals are processed
for a noise-free, echo-cancelled transmission, and for obtaining a flat high-resolution image (1920 x 1020
pixels) on the television screen.] A cell phone or digital camera is another application with multiple ASIPs.

‘ 34 { Embedded Syskms

In a cell phone, a number of tasks have to be performed: (a) Speech signal-compression and coding.
(b) Dialing (c) Modulating and Transmitting (d) Demodulating and Receiving (e) Signal decoding and
decompression (f) Keypad interface and display interface handling (g) Short Message Service (SMS) protocol-
based messaging (h) SMS message display. For all these tasks, a single processor does not suffice. Suitably
synchronized multiple processors are used.

Consider a video conferencing system. In this system, a quarter common intermediate format—Quarter-
CIF—is used. The number of image pixels is just 144 x 176 as against 525 x 625 pixels in a video picture on
TV. Even then, samples of the image have to be taken at a rate of 144 X 176 x 30 = 760320 pixels per second
and have to be processed by compression before transmission on a telecommunication or Virtual Private
Network (VPN). [Note: The number of frames are 25 or 30 per second (as per the standard adopted) for real-
time displays and in motion pictures.] A single DSP-based embedded system does not suffice to get real-time
images during video conferencing. Real-time video processing and multimedia applications most oftemr heed
a multiprocessor unit in the embedded system.)
Multiple processors or dual core processors are ‘used when a single microprocessor does not meet ¢
needs of the different tasks that execute concurrently. The operations of all the processors are synchronQed
to obtain optimum performance. i

1.7.7 Embedded Processor/Embedded Microcontroller

An embedded processor is a processor with special features that allow it to embed multiple processes inta the
system. ‘

Real time image processing and aerodynamics are two areas where fast, precise and intensive calculations
and fast context switching (from one program to another) are essential. Embedded processor is; the
term sometimes used for processor that has been a specially designed such that it has the following
capabilities:

1. Fast context switching and thus lower latencies of the tasks in complex real time applications.
[Section 4.6] Fast context switching means that the calling program or interrupted service routine CPU
registers save and retrieve fast [Section 4.6]. o o

2. 32-bit or 64-bit atomic addition and multiplication, and no shared data problem in the operations ‘with
large operands with each operand placed in two or four registers. [Section 7.8.1]

3. 32-bit RISC core for fast, more precise and intensive calculations by the embedded software.

Embedded microcontroller is the term sometimes used for specially designed microcontrollers that have
the following capabilities: j

1. When a microcontroller has internal RAM, large flash or ROM, timer, interrupt handler, devices and
peripherals and there is no external memory or device or peripheral required for the given application.

2. Fast context switching and- thus lower latencies of the tasks in complex real time applications. For
example, ARM and 68HC1x microcontrollers save all CPU registers fast

An embedded processor is term used for processors with fast processing, fast context-switching and ato&c
ALU operations. An embedded microcontroller is the term used for a microcontroller that has interg.
RAM, large flash or ROM, timer, interrupt handler, internal devices and internal peripherals and there isj 1

external memory or device or peripheral required for the given application. Ni g

In!r#f.lction to Embedded Systems

Complex System Embedded Processors Table 1.7 gives different processors that can embed in a

complex system.

Téble 1.7 Processors in complex embedded systems

and Java accelerator
accelerates Java code
execution.

Processor . Application Advantage Disalvantage
General Purpose ‘When intensive No engineering cost for Additional redundant
Microprocessor computations are designing the processor. execution units that are]
required, caches are used . ’ * “not needéd in the given: |
and pipeline and system design
superscalar operations
are needed and large
embedded software is to
be located in the external
memory cores or chips.

Microcontroller Used with internal No engineering cost for Additional
memory, devices and designing the processor manufacturing costs and
peripherals and when with internal memory, redundant application
embedded software is to devices and peripherals. units which are not
be located in the internal needed in the given
ROM or flash. system design.

DSpP Used with signal No engineering cost Manufacturing cost may
processing-related involved for designing be high.
instructions for filters, the signal processor.
image, audio, and video
and CODEC operations.

Single purpose Control 10 and bus They support other In-house engineering

processors and operations and processing units in the - _cost.of development, »

application specific peripherals and devices. system and execute " “royalty payments for an
system processor specific hardware IP core of processor and
processes fast. time-to-market cost.

Dual core processor To significantly enhance Reduced engineering Manufacturing cost, as
the performance of the cost. dual core processors are
system. costly.

Accelerator To accelerate the Increases performance by Engineering cost of
execution of codes. A co-processing with the development or royalty
floating point main processor. payments for IP core of
coprocessor accelerates processor and time-to-
mathematical operations market cost.

Embedded Sy{pms

A DSP for mobile phones, for example, OMAP of Texas Instruments, uses the effective power dissipation
methods of dynamic switching both for power supply voltage and operating frequency of the CPU core.

For a number of applications, the DSPs cores may not suffice. Domain specific ASIPs have specific
instruction sets. For IOs, network, media or security applications, smart card, video game, palm top cothputer,
cell-phone, mobile-Internet, hand-held embedded systems, Gbps transceivers, Gbps-L.AN systems; sateflite or
missile systems, we need special processing units in a VLSI circuit designed to function as a processot with
an instruction-set for programmability. These special units are called domain-specific ASIP.

1.7.8 Embedding ARM processor

Examples of Stream 4 GPPs in Table 1.4 are ARM 7 and ARM 9. The core of these processors can be
embedded onto a VLSI chip or an SoC. An ARM-processor VLSI-architecture is available either as a CPU
chip or for integrating it into VLSI or SoC. ARM, Intel and Texas Instruments and several other companies
have developed such processors. ARM provides CISC functionality with RISC architecture at the core. The
cores of ARM7, ARMS9 and their DSP enhancements are available for embedding in systems. [Refer to http:/
www.ti.com/sc/ docs/asic/modules/arm7.htm and arm9.htm].

ARM integrates with other features (for example DSP) in new GPPs, which are available from several
sources, for example, Intel and Texas Instruments. Exemplary ARM 9 applications are setup boxes, cable
modems, and wireless-devices such as mobile handsets.

ARM has a single cycle 16 x 32 multiple accumulate unit. It operates at 200 MHz. It uses 0.15 pm GS30
CMOSs. It has a five-stage pipeline. It incorporates RISC core with CISC functions. It integrates with a DSP
when designed for an ASIC solution. An example is its integration with DSP is TMS320C55x from Texas
Instruments. [Refer to http:/www.ti.com/sc/docs/asic/modules/arm7.htm and arm9.htm]

A lower performance but very popular version of ARM9 is ARM?7. It operates at 80 MHz. It uses 0.18 pm
based GS20 um CMOSs. Using ARM7, ARM9 and CORTEX-M3, a large number of embedded systems
have recently become available.

Lately, a new class of embedded systems has emerged that additionally incorporates ASSP chips or cores
in its design.

1.7.9 Embedding ASSP

Assume that there is an embedded system for real-time video processing. Real-time processing arises for
digital television, high definition TV decoders, set-up boxes, DVD (Digital Video Disc) players, web phones,
video-conferencing and other systems. An ASSP that is dedicated to these specific tasks alone provides a
faster solution. The ASSP is configured and interfaced with the rest of the embedded system.

Assume that there is an embedded system that using a specific protocol interconnects, its units through,
specific bus architecture to another system. Also, assume that suitable encryption and decryption is required.
[The output bit stream encryption protects messages or design from passing to an unknown external entity.]
For these tasks, besides embedding the software, it may also be necessary to embed some RTOS features
[Section 1.4.6]. If the software alone is used for the above tasks, it may take a longer time than a hardwired
solution for application-specific processing. An ASSP chip provides such a solution. For example, an ASSP
chip [from i2Chip (http://www.i2Chip.com)] has a TCP, UDP, IP, ARP and Ethernet 10/100 MAC (Media Access
Control) hardwired logic included into it. The chip from i2Chip, W3100A, is a unique hardwired Internet
connectivity solution. Much needed TCP/IP stack processing software for networking tasks is thus available as
a hardwired solution. This gives output five times faster than a software solution using the system’s GPP. It is
also an RTOS-less solution. Using the same microcontroller in the embedded system to which this ASSP chip

Intrkducﬁon to Embedded Systems » ! 37 ‘

interfaces, Ethernet connectivity can be added. Another ASSP, which is now available, is the ‘Serial-to-Ethernet
Converter (IIM7100). It does real-time data processing by a hardware protocol stack. It needs no change in the
application software or firmware and provides the most economical and smallest RTOS-solution.

An EASSP is used as an additional processing unit for running application specific tasks in place of processing
using embedded software.

= 18 ~DESIGN PROCESS IN EMBEDDED SYSTEM

The concepts used during a design process are as follows.

1.

2.
3.

8.

Abstraction: Each problem component is first abstracted. For example, in the design of a robotic
system, the problem of abstraction can be in terms of control of arms and motors.
Hardware and Software architecture: Architectures should be well understood before a design.

Extra functional Properties: Extra functionalities required in the system being developed should

be well understood from the design.

System Related Family of designs: Families of related systems developed earlier should be

taken into consideration during designing.

Modular Design: Modular design concepts should be used. System designing is fast by

decomposition of software into modules that are to be implemented. Modules should be such that they

can be composed (coupled or integrated) later. Effective modular design should ensure effective (i)

function independence, (ii) cohesion and (ii1) coupling.

(a) Modules should be clearly understood and should maintain continuity.

(b) Also, appropriate protection strategies are necessary for each module. A module is not permitted
to change or modify another module functionality. For example, protection from a device driver
modifying the configuration of another device.

Mapping: Mapping into various representations is done from software requirements. For example,
data flow in the same path during the program flow can be mapped together as a single entity. Transform
and transaction mapping design processes are used in designing. For example, an image is input data
to a system; it can have a different number of pixels and colours. The system does not process each
pixel and colour individually. Transform mapping of image is done by appropriate compression and
storage algorithms. Transaction mapping is done to define the sequence of images.

. User Interface Design: User interface design is an important part of design. User interfaces are designed

as per user requirements, analysis of the environment and system functions. For example, in an automatic
chocolate vending machine (ACVM) system, the user interface is an LCD multiline graphics display. It
can display a welcome message as well as specify the coins needed to be inserted into the machine. for
each type of chocolate. The same ACVM may be designed with touchscreen User Interface (GUI), or it
may be designed with Voice User Interfaces (VUIs). Any of these interface designs has to be validated by
the customer. For example, the ACVM customer who installs the machine must validate message language
and messages to be displayed before an interface design can proceed to the implementation stage. -
Refinements: Each component and module design needs to be refined iteratively till it becomes the
most appropriate for implementation by the software team.

The software design process may require use of Architecture Description Language (ADL). It is used for
representing the following: (i) Control Hierarchy (ii) Structural Partitioning (iii) Data Structure and Hierarchy
(iv) Software Procedures.

‘ Embedded Syasems

Figure 1.11 shows the activities for software-design cycle during an embedded software-development
process and the cycle may be repeated till tests show the verification of specifications.

Development
Process

Model/Analyse 1

Requirements of
System

I

Design

Data Structure, Software 2
Architecture, Interfaces
and Algorithms. : b Linear T

implementation:
of Design 3

Internal logic and
External functions 4

One
Life
Cycle

I

I

No

Is it per
specifications?

» Edit » Test Debug

Fig. 1.11 Activities for software design during an embedded soft\)vali'e'-development process

1.8.1 Design Metrics

A design process takes into account design metrics. There are several design metrics for an embedded system,
and these are listed in Table 1.8.

1.8.2 Abstraction of Steps in the Design Process

A design process is called bottom-to-top design if it builds by starting from the components. A design process
is called top-to-down design if it first starts with abstraction of the process and then after abstraction, the
details are created. Top-to-down design approach is the most favoured approach. The following lists the five
levels of abstraction from top to bottom in the design process:

Im+uuction to Embedded Systems
(1) Requirements: Definition and analysis of system requirement. It is only by a complete. clarity of

the required purpose, inputs, outputs, functioning, design metrics (Table 1.8) and validation requirements
for finally developed systems specifications that a well designed system can be created. There has to

be consistency in the requirements.

Table 1.8 Design metrics used in the embedded systems

Design Metrics

Description e Ty

Power Dissipation

Performance

Process deadlines

User interfaces
Size
Engineering cost

Manufacturing cost
Flexibility

Provotype
development time
Time-to-market

System and user
safety

Maintenance

For many systems, particularly battery operated systems, such as mobile phone or digital
camera the power consumed by the system is an important feature. The battery peeds to be
recharged less frequently if power dissipation is small.

Instructions execution time in the system measures the performance. Smaller execution
time means higher performance. For example, a- mobile phone, voice signals processed
between antenna and speaker in 0.1s shows phone performance. Consider another. For
example; a digital camera, shooting a 4M pixel still image in 0.5s shows the camera
performance.

There are number of processes in the system, for example, keypad input processing, graphic
display refresh, audio signals processing and video signals processing. These have deadlines
within which each of them may be required to finish computations and give results.

These include keypad GUIs and VUIs.

Size of the system is measured in terms of (i) physical space required, (ii) RAM in kB and
internal flash memory requirements in MB or GB for running the §oftware and for data
storage and (iii) number of million logic gates in the hardware.

Initial cost of developing, debugging and testing the hardware and software is called
engineering cost and is a one-time non-recurring cost.

Cost of manufacturing each unit.

Flexibility in design enables, without any significant engineering cost, development of
different versions of a product and advanced versions later on. For example, software
enhancement by adding extra functions necessitated by changing environment and software
re-engineering.

Time taken in days or months for developing the prototype and in-house testing for system
functionalities. It includes engineering time and making the prototype nme

Time taken in days or months after prototype development to put a product for users and
consumers.

System safety in terms of accidental fall from hand or table, theft (e.g., a phone locking
ability and tracing ability) and in terms of user safety when using a product (for example,
automobile brake or engine).

Maintenance means changeability and additions to the system; for example, adding or updating
software, data and hardware. Example of software maintenance is additional service or
functionality software. Example of data maintenance is additional ring-tones, wallpapers,
video-clips in mobile phone or extending card expiry date in case of smart card. Example of
hardware maintenance is additional memory or changing the memory stick in mobile computer
and digital camera. ‘

. Embedded Systems

(2) Specifications: Clear specifications of the required system are must. Specifications need to be
precise. Specifications guide customer expectations from the product. They also guide system
architecture. The designer needs specifications for (i) hardware, for example, peripherals, devices
processor and memory specifications, (ii) data types and processing specifications, (iii) expected system
behaviour specifications, (iv) constraints of design, and (v) expected life cycle specifications. Process
specifications are analysed by making lists of i mputs on events outputs on evems and how the prodesses

~activate on-each évent (interrapt).- -~ -7 T

(3) Architecture: Data modeling designs of attributes of data structure, data flow graphs (Section 6.2),
program models (Section 6.1), software architecture layers and hardware architecture are defined.
Software architectural layers are as follows:

1. The first layer is an architectural design. Here, a design for system architecture is developed. The
question arises as to how the different elements—data structures, databases, algorithms, control
functions, state transition functions, process, data and program flow—are to be organised.

2. The second layer consists of data-design. Questions at this stage are as follows. What design of
data structures and databases would be most appropriate for the given problem? Whether data
organised as a tree- like structure will be appropriate? What will be the design of the components
in the data? [For example, video information will have two components, image and sound.}

3. The third layer consists of interface design. Important questions at this stage are as follows. What
shall be the interfaces to integrate the components? What is the design for system integration?
What shall be design of interfaces used for taking inputs from the data objects, structures and
databases and for delivering outputs? What will be the port structure for receiving mputs and
transmitting outputs?

(4) Components: The fourth layer is a component level design. The question at this stage is as follows.
What shall be the design of each component? There is an additional requirement in the design of embedded
systems, that each component should be optimised for memory usage and power dissipation. Components
of hardware, processes, interfaces and algorithms. The following lists the common hardware components:
1. Processor, ASIP and single purpose processors in the system
2. Memory RAM, ROM or internal and external flash or secondary memory in the system
3. Peripherals and devices internal and external to the system
4. Ports and buses in the system
5. Power source or battery in the system

During software development process we can model the components as object-oriented. Table 1.9 lists the

stages as components-based object-oriented software development process.

(5) System Integration: Built components are integrated in the system. Components may work fine
independently, but when integrated may not fullfil the design metrics. The system is made to function
and validated. Appropriate tests are chosen. Debugging tools are used to correct erroneous functioning.

Each component and its interface system is integrated after the design stage. Program implementation is in

a language and may use an integrated development environment (IDE), and source code engineering tools,
which should follow the model, software architecture and design specifications. Program simplicity should
be maintained during the implementation process. .

The design stages range from abstraction to detailed designing to verification activities. Contin;ﬁbus
refinement in design can be made by effective communication between designers and implementers. Software
design can be assumed to consist of four layers: architecture design, data design, interfaces design and .

component level design. -

lntr&luction to Embedded Systems

Table 1.9 Components-based object-oriented software development process

Effort Activities Model Deficiency

Stage 1 Components that could be used in software development identified

Stage 2 Selection of available classes (single logically bonded groups) from a

. Need for robust interfaces
software components resource library

and slow development in

Stage 3 Sort components, which are available and reusable by re-engineering and case the reusable
which are unavailable components are not
Stage 4 Re-engineer components and create unavailable components available in required

. numbers
Stage 5 Construct software from the components and test them - ER

Stage 6 Iteratively construct till final validation of software

Actions at each step Research by software engineering experts have shown that on an average, a
designer needs to spend about 50% of the time for planning, analysis and design, 40% for testing, validation
and debugging and 10-15% on coding. Action required to be taken at each step in the design process is listed
in Table 1.10.

Table 1.10 Action to be taken at each step of design process

Design Metrics Description

Analysis Design is analyzed

Steps for improvement The result of analysis is used to improve design to meet specifications and metrics

Verification System design must be verified to ensure that it meets the design metrics given in Table 1.8

1.8.3 Challenges in Embedded System Design: Optimizing Design Metrics

Following are the challenges that arise during the design process.

Amount and type of hardware needed: Optimizing the requirement of microprocessors, ASIPs and
single purpose processors in the system on the basis of performance, power dissipation, cost and other design
metrics are the challenges in a system design. A designer also chooses the appropriate hardware (memory
RAM, ROM or internal and external flash or secondary memory, peripherals and devices internal and external
ports and buses and power source or battery) taking into account the design metrics given in Table 1.8; for
example, power dissipation, physical size, number of gates and the engineering, prototype development and
manufacturing costs.

Optimizing Power Dissipation and Consumption: Power, consumption during the operational and idle
state of system should be optimal. The following methods are used to meet the design challenges.

Clog[; Rate Reduction . Power dissipation typically reduces 2.5 uW._per 100 kHz of reduced clock rate.
So reduction from 8000 kHz to 100 kHz reduces power dissipation by about 200 uW which is nearly similar
to when the clock is nonfunctional. [Remember, total power dissipated (energy required) may not reduce.
This is because on reducing the clock rate, the computations will take a longer time and total energy required
equals the power dissipation per second multiplied by computation time].

: w1
, Embedded Systems

The power 25 uW is typically the residual dissipation needed to operate the timers and few other units. By
operating the clock at a lower frequency or.during the power-down mode of the processor, the advantages are
as follows: (i) Power loss due to heat generation reduces. (ii) Radio frequency interference also reduces due
to the reduced power dissipation within the gates. [Radiated RF (Radio Frequency) power depends on the RF
current inside a gate, which reduces due to increase in ‘ON’ state resistance between drain and channel of
each MOSFET transistor and that reduces heat generation.]

Voltage Reduction In portable or hand-held devices such as a cellular phone, compared to 5 V operation,
a CMOS circuit power dissipation reduces by one sixth, ~2V/5V)2,in 2.0 V operation. Thus the time intervals
needed for recharging the battery increase by a factor of six.

Wait, Stop and Cache Disable Instructions An embedded system may need to be run continuously,
without being switched off; the system design, therefore, is constrained by the need to limit power dissipation
while it is ON but is in idle state. Total power consumption by the system while in running, waiting and idle
states should be limited. A microcontroller must provide for executing Wair and Stop instructions for the
power-down mode. One way to reduce power dissipation is to cleverly incorporate into software the Wair and
Stop instructions. Another is to operate the system at the lowest voltage levels in the idle state and selecting
power-down mode in that state. Yet another method is to disable use of certain structural units of the processor—
for example, caches—when not necessary and to keep in disconnected state those structure units that are not
needed during a particular software execution, for example timers or IO units.
*Operations can be performed atTow voltage of redticed clock rate ifi-order to-control power dissipatioh{ For
. embedded system software, performance analysis during its design phase must also include the analysfs of
power dissipation during program execution and during standby. An embedded system has to per
tasks continuously from power-up to power-off and may even be kept ‘ON’ continuously. Clever real-fime
programming by using ‘Wait’ and ‘Stop’ instructions and disabling certain units when not needed isone
method of saving power during program execution. l

Process Deadlines Meeting the deadline of all processes in the system while keeping the. memory,
power dissipation, processor clock rate and cost at minimum is a challenge.

Flexibility and Upgrade ability Flexibility and upgrade ability in design while keeping the cost
minimum and without any significant engineering cost is a challenge. Flexibility and upgrade ability allow
different and advanced versions of a product to be introduced in the market later on.

Reliability Designing a reliable product by appropriate design, testing and thorough verification, is a
challenge. The goal of testing is to find errors and to validate that the implemented software is as per the
specifications and requirements. Verification refers to an activity to ensure that specific functions are correctly
implemented. Validation refers to an activity to ensure that the system that has been created is as per the
requirements agreed upon at the analysis phase, and to ensure its quality.

~ 1.9 TFORMALIZATION OF SYSTEM DESIGN

Formalization of system design is done using a top-down approach by abstraction (Section 1.8.2) and by
* Detailing requirements and specifications of hardware and software ‘

o Defining architectures of hardware and software

¢ Coding and implementation as per architecture

o . Testing, validation and verification of system

Since a diagrammatic model clears the design concepts better than abstraction, a modeling language, for
formalization can be used. The Universal Modeling Language (UML) is used. In UML, a designer describes
the following:

1. ‘User Diagram’, ‘Object Diagram’, ‘Sequence Diagram’, ‘State Diagram’, ‘Class Diagram’ and

*Activity Diagram’
Classes and Objects, which describe identity, attributes, components and behaviour
Inheritances of the classes and objects
Interfaces of the objects and their implementation at the objects
Structural description of the design components
Behavioral description in terms of states, state machine and signals (Section 6.3)
. Events description
Section 6.5 will describe UML in detail. Chapters 11 and 12 will describe the model design examples in detail.

No Lk W

~1.10 T DESIGN PROCESS AND DESIGN EXAMPLES

1.10.1 System Design Process Examples

Chapters 11 and 12 will describe design examples in detail.

1.10.2 Automatic Chocolate Vending Machine (ACVM)

Let us consider an automatic chocolate vending machine. This interesting example given here helps a reader
to understand several concepts of programming an embedded system as a multitasking system.

Figure 1.12 shows the diagrammatic representation of ACVM. Assume that ACVM has following
components:

1. Ithas keypad on the top of the machine. That enables a child to interact with it when buying a chocolate.

The owner can also command and interact with the machine.

2. It has an LCD display unit on the top of the machine. It displays menus, text entered into the ACVM
and pictograms, welcome, thank you and other messages. It enables the child as well as the ACVM
owner to graphically interact with the machine. It also displays time and date. (For GUIs, the keypad
and LCD display units or touch screen are basic units.)

It has a coin insertion slot and a mechanical coin sorter so that child can insert coins to buy a chocolate.

It has a delivery slot so that child can collect the chocolate and coins, if refunded.

. It has an Internet connection port using a USB based wireless modem so that owner can know status
of the ACVM sales from a remote location.

@ w

ACVM Functions Assume that ACVM functions are as follows:
1. The ACVM displays the GUIs and if the child wishes to enter contact information, birthday information
or get answer to FAQs, it displays the appropriate menu.
2. It displays a welcome message when in idle state. It also continuously displays time and date at the
right bottom corner of display screen. It can also intermittently display news, weather data or
advertisements or important information of interest during idle state.

Embedded Systems

- When first coin is inserted, a timer also starts. The child is expected to insert all required coins in

2 minutes.

After 2 minutes the ACVM will display a query to the child if the child does not insert sufficient coins.
If the query is not answered the coins are refunded.

Within 2 minutes if sufficient coins are collected, it displays the message, ‘Thanks, wait for few
moments please!’, delivers the chocolate through the delivery slot and displays message, ‘Collect the
chocolate and visit again, please!’

Hardware units ACVM embeds the following hardware units.

1.

SRR

Microcontroller or ASIP (Application Specific Instruction Set Processor)

2. RAM for storing temporary variables and stack
3.
4. Flash memory for storing user preferences, contact data, user address, user date of birth, user

ROM for application codes and RTOS codes for scheduling the tasks

identification code, answers of FAQs

Timer and interrupt controller

A TCP/IP port (Internet broadband connection) to the ACVM for remote control and for the owner to
get ACVM status reports

ACVM specific hardware to sort coins of different denominations. Each denomination coin generates
a set of status and input bits and port-interrupts. Using an ISR for that port, the ACVM processor reads
the port status and input bits. The bits give the information about which coin has been inserted. After
each read operation, the status bits are reset by the routine

. Power supply
Kaypad for user [LCD Display-or Touch Screen for user }
Interface
Mechanical l Microcontroller based hardware ‘
Coin Sorter USB_Wireless_

| RTOS H Embedded Software *] Modem

.3

Fig. 1.12 Diagrammatic representation of the ACVM

Software components ACVM embeds the following software components:

SQUnbhwN~

Keypad input read task

Display task

Read coins task for finding coins sorted
Deliver chocolate task

TCP/IP stack processing task

TCP/IP stack communication task

1.10.3 Smart Card

Smart card is one of the most used embedded system today. It is used for credit—debit bankcard, ATM card,
e-purse or e-Wallet card, identification card, medical card (for history and diagnosis details) and card for a

|ntrt*mction to Embedded Systems

number of new innovative applications. [Reader may refer to a frequently updated website, http://
www.sguthery @tiac.net for the answers of frequently asked questions about cards.] The security aspect is of
paramount importance for smart card use, when used for financial and banking-related transactions. [Reader
may refer to http://www.home.hkstar.com/~alanchan/papers/smartCardSecurity/ and http://www.research.
ibm.com/secure_systems/scard.htm for details of the card-security requirements. |

The smart card is a plastic card ISO standard dimensions, 85.60 x 53.98 x 0.80 mm. It is an embedded
system on a card: SoC (System-On-Chip). ISO recommended standards are ISO7816 (1 to 4) for host-machine
contact-based cards and ISO14443 (Part A or B) for the contactless cards. The silicon chip is just a few
multimeters in size and is concealed in-between the layers. Its very small size protects the card from bending.
Figure 1.13 shows embedded-system hardware components for a contactless smart card.

An Embedded System
Contact-less Smart Card Components

RAM ROM EEPROM
(Temporary (Application (Application
Variables) and RTOS) Variables)

) '

- 7 :
Data, Address_, Control Internal Buses : Identifications
v Account Number, Expiry Date, Card Number :/'7 Data Flow

""""""""""""" N - 1
Processor :

S

A

Interfacing
‘ ﬁ [| e
Timer and 16 MHz Charge Circuit

Interrupt Controller Amplitude Pump

Shifted Circuit

Key Modulator + Ly
Circuit -
System Power Supply Transceiver Antenna

on card

Fig. 1.13 Embedded hardware components in a contact less smart card

Embedded Hardware The embedded hardware components are as follows:

o Microcontroller or ASIP

e RAM for temporary variables and stack
One time programmable ROM for application codes and RTOS codes for scheduling the tasks
Flash for storing user data, user address, user identification codes, card number and expiry date
Timer and interrupt controller
A carrier frequency ~16 MHz generating circuit and Amplitude Shifted Key (ASK) modulator
Interfacing circuit for the 10s
Charge pump for delivering power to the antenna for transmission and for system circuits. The charge
pump stores charge from received RF (radio frequency) at the card antenna in its vicinity. [The charge
pump is a simple circuit that consists of the diode and high value ferroelectrics material-based capacitor.]
The details of the basic hardware units are as follows:

Embedded Sysfems

1. The Microcontroller used can be MC68HC11D0 or PIC16C84 or a smart card processor Philips
Smart XA or a similar ASIP Processor. MC68HC11DO has 8 kB internal RAM and 32 kB EPROM
and 2/3 wire protected memory. Most cards use 8-bit CPUs. The recent introduction in the cards is of
a 32-bit RISC CPU. A smart card CPU should have special features, for example, a security lock. The
lock is for a certain sections of the memory. A protection bit at the microcontroller may protect 1 kB
or more data from modification and access by any external source or instructions outside that memory.
Once the protection bit is placed at the maskable ROM in the microcontroller, the instructions or data
within that part of the memory are accessible from instructions in that part only (internally) and not
accessible from the external instructions or instructions outside that part. The CPU may disable access
by blocking the write cycle placement of the data bits on the buses for instructions and data protection
at the physical memory after certain phases of card initialization and before issuing the card to the
user. Another way of protecting is as follows: The CPU may access by using the physical addresses,
which are different from the logical address used in the program.

2. ROM is used in the card. The usual size is 8 or 64 kB for usual or advanced cryptographic features in
the card, respectively. Full or part of ROM bus activates only after a security check. The processor
protects a part of the memory from access. The ROM stores the following.

I
ii.

iii.
iv.
v.

Fabrication key, which is a unique secret key for each card. It is inserted during fabrication.
Personalization key, which is inserted after the chip is tested on a printed circuit board. Physical
addresses are used in the testing phase. The key preserves the fabrication key and this key insertion
preserves the card personalization. After insertion of this key, RTOS and applications use only
logical addresses.

RTOS codes

Application codes

A utilization lock to prevent modification of two PINs and to prevent access to the OS and
application instructions. It stores after the card enters the utilization phase.

3. EEPROM or Flash is scalable. These means that only that part of the memory required for a particular
operation will unlock for use. The authorizer will use the required part; the application will use the
other part. It is protected by the access conditions stored therein. It stores the following:

il.

iii.

vi.
vii.

PIN (Personal Identification Number), the allotment and writing of which is by the authorizer (for
example, a bank) and its use is possible by the latter only by using the personalization and fabrication
keys. It is for identifying the card user in future transactions. Card user is given this key.
Alternatively, a modifiable password is given to the user and password opens the PIN key.

An unblocking PIN for use by the authorizer (say the bank). Through this key, the card circuit
identifies the authorizer before unblocking. Data of the user unblocks for the authorizer and
storing of information on the card is possible by the authorizer through the host. :
Access conditions for various hierarchically arranged data files.

Card user data, for example, name, bank and branch identification number and account number
or health insurance details.

Data post issue that the application generates. For example, in case of e-purse, the details of
previous transactions and current balance. Medical history and diagnosis details and/or previous
insurance claims and pending insurance claims record in case of a medical card.

It also stores the application’s non-volatile data.

Invalidation lock sent by the host after the expiry period or card misuse and user account closing
request. It locks the data files of the master or elementary individual file or both.

4. RAM stores the temporary variables and stack during card operations by running the OS and the
application. '

ction to Embedded Systems

. Chip power supply voltage extracts by a charge pump circuit. The pump extracts the charge from the

signals from the host analogous to what a mouse does in a computer and delivers the regulated voltage
to the card chip, memory and IO system. Signals can be from antenna or from clock pin. In a typical
card operation using 0.18 jum technology, 1.6 t0 5.5 V is the threshold limit and for a 0.35 pm technology,

1 27t055V.
. IO System of chip and host interact through asynchronous serial UART (Section 3.2.3) at 9.6 k or

106 k or 115.2 k baud/s. The chip interconnects to a card hosting system (reader and writer) either
through the gold contacts or through a centimeter sized antenna on each side. The latter provides
contactless interconnection between the IO pins, which are meant for contact-based interaction, RST
(Reset Signal from host) and Clock (from host).

. Wireless Communication for IO interaction is by radiations through the antenna coils for contactless

interaction. The card and host interact through a card modem and a host modem. The application
protocol data unit (APDU) is a standard for communication between the card and host computer.
Modulation is with 10% index amplitude modulating carrier of 13.66-13.56 Mbps ASK (amplitude
shifted keying) is used for contactless communication at data rates of ~1 Mbps. One-sixteenth frequency
subcarrier modulates through BPSK (Binary Phase Shifted Keying).

Embedded Software Smart card embeds the following software components:

1.

w

Nows

8.

Boot-up, initialisation and OS programs

Smart card secure file system

Connection establishment and termination

Communication with host

Cryptography algorithm

Host authentication

Card authentication

Saving addition parameters or recent new data sent by the host (for example, present balance left)

The smart card is an exemplary secure embedded system with security software. The card needs
cryptographic software. Embedded software in the card needs special features in its operating system over
and above the MS DOS or UNIX system features. Special features needed are as follows:

1.

PR

Protected environment. It means software should be stored in the protected part of the ROM.
Restricted run-time environment.

Its OS, every method, class and run time library should be scalable.

Code-size generated should be optimum. The system needs should not exceed 64 kB memory.
Limited use of data types; multidimensional arrays, long 64-bit integer and floating points and very
limited use of the error handlers, exceptions (Section 4.2.2), signals (Sections 6.5 and 7.10), serialization,
debugging and profiling. [Serialization is the process of converting an object into a data stream for
transferring it to network or from one process to another. The de-serialized data are the receiver end].
A three-layered file system for the data. One file for the master file to store all file headers. A header
means file status, access conditions and the file lock. The second file is a dedicated file to hold a file
grouping and headers of the immediate successor elementary files of the group. The third file is the
elementary file to hold the file header and its file data.

There is either a fixed length file management or a variable length file management with each file
having a predefined offset.

. Classes for the network, sockets, connections, data grams, character-input output and streams, security

management, digital-certification, symmetric and asymmetric keys-based cryptography and digital
signatures.

‘ 48 ‘ Embedded Systems

1.10.4 Digital Camera

Digital cameras may have 4 to 6 M pixel still images, clear visual display (ClearVid) CMOS senser, 7 cm
wide LCD photo display screen, enhanced imaging processor, double anti blur solution and high-speed
processing engine, 10X optical and 20X digital zooms and can also record high definition video-clips. It
therefore has speaker microphone(s) for high quality recorded sound. It has an audio/video out port for
connecting to a TV/DVD player or computer.

Let us assume that the camera is still just a camera. Figures 1.14(a) and (b) show hardware and software
components in a simple digital camera. Assume that the camera has the following components:

(a)

(b)

LCD or Touch screen for frame view l L Keys l L CCD ‘
@ ADC
Bluetooth Flash Memory %:ﬁ(;"%":;:"cef ASIP CCDDSP
USB Port Embedded Software
Serial COM Microcontroller (
\i

y ¥ Y

Light, flash and display device drivers l

CCD signal processing task I

|
l
|
[Pixel co-processing task 1

] JPEG coder] [JPEG decoder]
|

LCD, Bluetooth, COM and USB Port device drivers

Fig. 1.14 (a) Digital camera hardware components (b) Digital camera software components

1.

2.

S

It has keys on the camera. That enables a user to operate the camera. It has navigation keys to navigate
through the images back and forth.

Shutter, lens and charge coupled device (CCD) array sensors for images in sizes 2592 x 1944 pixels =
5038848 pixels, VGA (E-mail) 640 x 480 = 307200 pixels, 2592 x 1728 = 3.2 M pixels, 2048 x 1536
pixels = 3 M pixels, or 1280 x 960 pixels = 1 M pixels.

It has a good resolution photo quality LCD display unit on the back of camera to show photographs
or recorded video-clips. It displays text such as image-title, shooting data and time and serial number.
It displays messages. It displays the GUI menus when the user interacts with the camera.

It has a self-timer lamp for flash.

Internal memory flash to store OS and embedded software, and limited number of image files.

Flash memory stick of 2 GB or more for large storage.

{
Intr#duction to Embedded Systems

7.

It has Universal Serial Bus (USB) port (Section 3.10.3) or Bluetooth interface, which connects it to a
computer and printer.

Camera Functions Assume that the camera functions is as follows:

1.

It displays the frame view on the LCD screen so that user can adjust the camera inclination before
shooting the frame.

It displays the saved images on the LCD using navigation keys.

When a key for opening the shutter is pressed, the flash lamp glows and the self-timer circuit switches
off the lamp automatically.

The frame light falls on the CCD array, which transmits the bits for each pixel in each row in the frame
through an ADC. Bits from dark area pixels in each row are used for offset corrections in the CCD
signal for light intensities in each row.

. The CCD bits of each pixel in each row and column are offset corrected using a CCD signal processor

(CCDSP).

The processed signals are compressed using a JPEG CODEC and saved in one jpg file for each frame.
A DSP does compression using the the discrete cosine transformations (DCTs) and decompression by
inverse DCT. Thereafter, it also does Huffman coding for JPEG compression.

A DAC sends the inputs for the display unit. The DAC gets the input from the pixel processor, which
gets the inputs from the JPEG files for the saved images and gets input directly from the CCDSP
through the pixel processor or the frame in the present view.

Digital Hardware units The camera embeds the following hardware units.

R wN =

© 0 o

Microcontroller or ASIP

Multiple processors (CCDSP, DSP, pixel processor and others)

RAM for storing temporary variables and stack

ROM for application codes and RTOS codes for scheduling tasks

Timer, flash memory for storing user preferences, contact data, user address, user date of birth, user
identification code, ADC, DAC and interrupt controller (Sections 1.3.3, 1.3.5, 1.3.7 and 1.3.11)
USB controller (Section 3.10.3)

Direct memory access controller (Section 4.8)

LCD controller (Section 3.3.4)

Battery

Software components The camera embeds the following software components:

Nk v

CCD signal processing for off-set correction

JPEG coding

JPEG decoding

Pixel processing before display

Memory and file systems

Light, flash and display device drivers

COM, USB port and Bluetooth device drivers for port operations for printer and computer
communication control

1.10.5 Mobile Phone

The mobile phone today has a large number of features. It has sophisticated hardware and software.

Hardware units A mobile phone embeds an SoC (System-on-Chip) integrating the following hardware units.

1.

Nownkwn

Microcontroller or ASIP [An ASIP is configured to process encoding and deciphering and another
does the voice compression. Third ASIC dials, modulates, demodulates, interfaces the keyboard and
touch screen or multiple line LCD graphic displays, and processes the data input and recall of data
from memory].

DSP core, CCDSP, DSP, video, voice and pixel processors

Flash, memory stick, EEPROMs and SRAMs

Peripheral circuits, ADC, DAC and interrupt controller

Direct memory access controller (Section 4.8)

LCD controller (Section 3.3.4)

Battery

Software components The mobile phone software development tools are as follows:

1.
2.
3.

OS (Windows Mobile, Palm, Symbian) or BREW
Java 2 Micro Edition (J2ME) along with KVM as a Java Virtual Machine (Section 5.7.4)
Java Wireless toolkit with JDK (Java Development Kit)

The mobile phone embeds the following software components:

1.
2.

3.

PN Nk

Memory and file systems

Keypad, LCD, serial, USB, 3G or 2G port device drivers for port operations for keypad, printer and
computer communication control

SMS (Short Messaging Service) message creation and communicator, contact and PIM (personal
information manager), task-to-do manager and email '
Mobile imager for uploading pictures and MMS (multimedia messaging service)

Mobile browser for access to the Web

Downloader for Java games, ring-tones, games, wall papers

Simple camera with (Section 1.10.4)

Bluetooth synchronization, IrDA and WAP connections support (Section 3.13)

1.10.6 Mobile Computer

The mobile computer has Windows CE or Windows mobile as OS. It has a touch screen for GUI. The user
uses a stylus to enter commands. It has a virtual keypad (the keypad displayed on the screen and entries of text
and commands is through the stylus.

In addition to phone, a mobile computer has following software components:

1.

DAl

OS (Windows CE, Windows Mobile, PocketPC, Palm OS or Symbian OS)

Touch screen GUIs, memory and file systems

Memory stick

Outlook, Internet explorer, Word, Excel, Powerpoint, and handwritten text processor
Applications or enterprise software

1.10.7 A Set of Robots

Consider a set of 8 robots. One robot is the master robot (music director) and seven are slave robots (conductors).
Assume that the set is used to play an orchestra. Fi gures 1.14(a) and (b) show hardware and software components
in the set of robots. Assume that the robot has the following components.

1.

The master robot signals the commands and slave robots play accordingly.

Inttcguction to Embedded Systems

Nk

. Each robot is assumed to have five degrees of freedom. Each robot has a mechanical system of five

degrees of freedom. At each degree of freedom, there is a servomotor. A servomotor controls by
PWM method (Section 1.3.7). Each motor is controlled in a sequence to let the robot perform the
desired action.

Each robot has a microcontroller with expansion ports, PO, ..., P8. Actually a single ASIC can perform
multiple port functions of a microcontroller. However since the engineering cost o1 ASiC development
is high, a general purpose microcontroller 68HC12 or 8051 is used.

The port outputs connect the motors and PWM outputs drive the motors in each robot.

Each robot has a serial IO with IrDA protocol. (Section 3.13.1)

Internal memory flash to store the OS, embedded software and limited amount of music.

There is a music file processor for playing the music. Slave robots have speaker outputs for playing
music.

Master Robot Functions Assume that master robot functioning is as follows:

1.

2.
3.

Slave
1.
2.

3.

It receives commands from a remote controller to start and stop the music and the code for the specific
orchestra to be played.

It sends PWM signals to the ports for moving the sticks in both hands as per the program.

It establishes and binds the sockets (the virtual devices) connection with the slaves. It sends the signals
through sockets using IrDA protocols. The byte streams response to the clients are as per the music
file to be played by the slave.

Robot Functions Assume that slave robot functioning is as follows:

It establishes and binds the sockets (the virtual devices) connection with the master.

It receives from a master socket the commands accept () and write (); it also receives commands to
start and stop music and the code for the specific orchestra to be played.

It receives the signals through sockets using IrDA protocols. The byte streams from the server are as
per the music file being played.

Hardware units Robots embed the following hardware units.

L.

Microcontroller or ASIP

. Music file processor

. RAM for storing temporary variables and stack

. ROM for application codes and RTOS codes for scheduling robot actions and tasks
. Timer, flash memory for storing user preferences and music files

. IrDA controller (Section 3.13.1)

. Direct memory access controller (Section 4.8)

. Power supply source or battery

. Socket functions

. Music coding

. Music decoding

. Memory and file systems

. Light, flash and display device drivers
. IrDA and socket port device drivers

. Motor drivers

. IOISRs

2
3
4
5
6
7
8
Software components Robots embed the following software components:
1
2
3
4
5
6
7
8

@ Embedded smams

L Sound device] [Mechanical Assembly j L Motors]
l Bluetooth l I Flash Memory] Microcontroller, Timer,
DMAC, PWM
| DA]

(a)

7 LCliant and server sockets ’

] Music file processing 1

[irDA protocol stack —[L Bluetooth protocol J

) { Music instrument and Bluetooth or IrDA device drivers]

Fig. 1.15 (a) Hardware components in the set of robots (b) software components in the set of
robots in which a master robots signals the commands and slave robots play according
to the signals from the master

“1.11 CLASSIFICATION OF EMBEDDED SYSTEMS

We can classify embedded systems into three types as follows.

1. Small scale embedded systems: These systems are designed with a single 8- or 16-bit
microcontroller; they have little hardware and software complexities and involve board-level design.
They may even be battery operated. When developing embedded software for these, an editor, assembler
and cross assembler, an integrated development environment (ISE) tool specific to the microcontroller
or processor used, are the main programming tools. Using ‘C’ language, programs are compiled into
the assembly and executable codes are appropriately located in the system memory. The software has
to fit within the memory available and keep in view the need to limit power dissipation when the
system is running continuously.

2. Medium scale embedded systems: These systems are usually designed with a single or a few
16- or 32-bit microcontrollers, DSPs or RISCs. These systems may also employ the readily available
single purpose processors and IPs (explained later) for the various functions—for example, bus
interfacing. [ASSPs and IPs may also have to be appropriately configured by the system software
before being integrated into the system-bus.] Medium scale embedded systems have both hardware
and software complexities. For complex software design, the following programming tools are available:
C/C++/Visual C++/Java, RTOS, source code engineering tool, simulator, debugger and an integrated
development environment. Software tools also provide solutions to hardware complexities.

3. Sophisticated embedded systems: Sophisticated embedded systems have enormous hardware
and software complexities and may need several IPs, ASIPs, scalable processors or configurable processors
and programmable logic arrays. They are used for cutting edge applications that need hardware and
software co-design and components that have to be integrated in the final system. They are constrained
by the processing speeds available in their hardware units. Certain software functions such as encryption

|ntr$ﬂuction to Embedded Systems

and deciphering algorithms, discrete cosine transformation and inverse transformation algorithms, TCP/
IP protocol stacking and network driver functions are implemented in the hardware to obtain additional
speeds. The software implements some of the functions of the hardware resources in the system.
Development tools for these systems may not be readily available at a reasonable cost or may not be
available at all. In some cases, a compiler or retargetable compiler might have to be developed for these.
[A retargetable compiler is one that configures according to the given target configr-ation 1n a system.]

~1.12 T SKILLS REQUIRED FOR AN EMBEDDED SYSTEM DESIGNER

An embedded system designer has to develop a product using the available tools within the given specifications,
cost and time frame. [Chapters 6, 13 and 14 will cover the design aspects of embedded systems.]

1. Skills for Small Scale Embedded System Designer: Author Tim Wilmshurst in his book
states that the following skills are needed in the individua::::””"”’1 or team that is developing a small-
scale system: “Full understanding of microcontrollers with a basic knowledge of computer architecture,
digital electronic design, software engineering, data communication, control engineering, motors and
actuators, sensors and measurements, analog electronic design and IC design and manufacture”. Specific
skills will be needed in specific situations. For example, control engineering knowledge will be needed
for design of control systems, and analog electronic design knowledge will be needed when designing
the system interfaces. The basic aspects of the following topics will be described in this book to
prepare the designer who already has a good knowledge of the microprocessor or microcontroller to
be used. (i) Computer architecture and organization. (ii) Memories. (iii) Memory allocation.
(iv) Interfacing memories. (v) Burning (a term used for porting) the executable machine codes in
PROM or ROM. (v) Use of decoders and demultiplexers. (vi) Direct memory accesses. (vii) Ports.
(viii) Device drivers in assembly. (ix) Simple and sophisticated buses. (x) Timers. (xi) Interrupt servicing
mechanism. (xii) C programming elements. (xiii) Memory optimization. (xiv) Selection of hardware
and microcontroller. (xv) Use of In-Circuit-Emulators (ICE), cross-assemblers and testing equipment.
(xvi) Debugging the software and hardware bugs by using test vectors. Basic knowledge in other
areas—software engineering, data communication, control engineering, motors and actuators, sensors
and measurements, analog electronic design and IC design and manufacture—can be obtained
from the standard text books available. A designer interested in small-scale embedded systems
may not need at all concepts of interrupt latencies and deadlines and their handling, the RTOS
programming tools described in Chapters 9 and 10 and the program models given in Chapter 6.

2. Skills for Medium Scale Embedded System Designer: Knowledge of ‘C’/C++/Java
programming, RTOS programming and program modeling skills are must to design medium-scale
embedded-system. Knowledge of the following are critical. (i) Tasks or threads and their scheduling by
RTOS. (ii) Cooperative and preemptive scheduling. (iii) Inter processor communication functions. (iv)
Use of shared data, and programming the critical sections and re-entrant functions. (v) Use of semaphores,
mailboxes, queues, sockets and pipes. (vi) Handling of interrupt-latencies and meeting task deadlines. (vil)
Use of various RTOS functions. (viii) Use of physical and virtual device drivers. [Refer to Sections 4.2.6,
7.10and 7.11.] Chapters 4 to 10 give detailed descriptions of these seven along with examples, and Chapters
11 and 12 provide on understanding of their use with the help of case studies. A designer must have access
to an RTOS programming tool with Application Programming Interfaces (APIs) for the specific
microcontroller to be used. Solutions to various functions like memory-allocation, timers, device drivers
and interrupt handing mechanism are readily available as the APIs of the RTOS. The designer needs to

S Embedded Systpms

@ Summary e

know only the hardware organization and use of these APIs. The microcontroller or processor then represents
a small system element for the designer and a little knowledge may suffice.

. Skills for Sophisticated Embedded System Designer: A team is needed to co-design and

solve the high level complexities of hardware and software design. Embedded system hardware
engineers should have skills in hardware units and basic knowledge of ‘C’/C++ and Java, RTOS and
other programming tools. Software engineers should have basic knowledge in hardware and a thorough
knowledge of ‘C’, RTOS and other programming tools. A final optimum design solution is then obtained
by system integration.

!
|

An embedded system is one that has embedded software in a computer-hardware, which makes it a system
dedicated for an application(s) or a specific part of an application or product or a part of a larger system. - t
The embedded system processor can be a general-purpose processor chosen from a number of familieg of
microprocessors. Alternatively, an ASIP for example microcontrollers, embedded processors and DSPs may be
designed for specific application on a VLSI chip. An application specific instruction set processor (ASSP) thay
be additionally used for fast hardwired implementation of a certain part of the embedded software. A sophistic&ed
embedded system may also use a multiprocessor or dual core unit. / |
Embedded systems locate a software image in ROM. The image often consists of the following: (i) Boot up
program. (i) Initialization data. (iii) Strings for an initial screen display or system state. (iv) Programs for khe
multiple tasks that the system performs. (v) RTOS kernel. / ’
The embedded system needs a power source and controlled and optimized po/ﬁver dissipation from the total
energy requirement. A charge pump provides a power-supply-less system in certain embedded systems. !
The embedded system needs clock and reset circuits. Use of the clock manager is a recent innovation. |
The embedded system needs interfaces: Input Output (IO) ports, serial UART and other ports to accept inputs»#nd
to send outputs by interacting with peripherals, display units, keypad or keyboard. o
The embedded system may need bus controllers for networking its buses with other systems.]
The embedded systern needs timers and a watchdog timer for the system clock and for real-time program scheduling
and control.
The embedded system needs an interrupt-controlling unit.

The embedded system may need an ADC for taking analog input from one or multiple sources. It needs a DAC
using PWM for sending analog output to motors, speakers, sound systems, etc. 3
The embedded system may need an LED or LCD or touch screen display units, keypad and keyboard, pulse
dialer, modem, transmitter, multiplexers and demultiplexers. L
Embedded software is usually made in the high-level languages C, C++, Java or visual C++ with certain feat{i*es
added, enabled or disabled for programming. Use of ‘C’ and C++ also facilitates the incorporation of assembly
language codes. T
The embedded system most often needs a real-time operating system for real-time programming and schedulidg,
device drivers, file system or device management and multitasking. |
The embedded system needs a debugger. !
A large number of applications and products employ embedded systems. A number of software tools are need&:d
in the development and design phase of an embedded system. *
Five applications are described in detail: An automatic chocolate vending machine, a smart card, digital came?a,
mobile phone, mobile computer and robots playing an orchestra. o
A VLSI chip can embed ASIP or a GPP core and IPs for the specific application. A system on-chip is the coz:#)t

i

in embedded systems; for example, a mobile phone in which analog and digital circuits, processors and software

reside on a chip and become a system. ‘

Intr+éuction to Embedded Systems

maintenance.

Srinivas Institute of Technology
AcC. NO. uweoe ——ch)ﬁ{tgo%oo» [55 ’

Cad! No.1

® | The design process is abstracted by (i) definitions and analysis of system requirements, design metrics (Table 1.8)
and validation requirements for finally developed systems specifications. There has to be consistency in the
. {#equirements, (ii) specifications (iii) architecture (iv) components (v) system integration.

* ggsign metrics are power dissipation, performance, process deadlines, user interfaces, size, engineering cost,
?i;lanufacturing cost, flexibility, prototype development time, time-to-market, system and user safety and

o i The challenge in the process designing the system is to optimize competing design metrics.
4

4
ASIP (Application Specific

Irgtruction Set)

]

sembler

Keywords and their Definitions

A circuit that converts the analog input to digital 8, 10 or 12 bits. The analog input is
applied between positive and negative pins and is converted with
respect to the reference voltage(s). When input equals reference positive and negative
voltage, then all output bits equal 1, and when 0, then all output bits equal 0.

A processor with an instruction set designed for specific application on a VLSI
chip; for example, microcontroller, DSP, IO, media, network or other domain-specific
processor.

A program that translates assembly language software into the machine codes placed
in a file called ‘.exe’ (executable) file.

A processing unit for system specific tasks, for example, image processing,
compression and decompression, and that is integrated through the buses with the
main processor in embedded system.

A bus consists of a common set of parallel lines to connect multiple devices, hardware
units and systems for communication between two of these at any given instance.
A communication protocol specifies the ways of communication of signals on bus.
Protocol also specifies ways of arbitration when several devices need to communicate
through the bus or ways of polling from the device requirements of the bus at an
instance.

A fast read and write on-chip memory for the processor execution unit. It stores
instructions and data fetched in advance from ROM or RAM for use in the execution
unit and for data write back for RAM. It has an advantage in that the processor
execution unit does not have to wait for instructions and data from external buses
and also does faster write back of data meant for RAM.

Fixed frequency pulses that an oscillator circuit generates and that controls all
operations during processing and all timing references of the system. Frequency
depends on the needs of the processor circuit. A processor, if it needs a
100 MHz clock then its minimum instruction processing time is a reciprocal of it,
which is 10 ns in a single cycle per instruction processing.

A circuit for encoding the input information in fewer bits and for decoding the
encoded information into the complete set of the original. Voice, speech, image and
video signals and bits can be encoded and decoded. The CODEC also functions as
a compression and decompression unit for voice, speech, image and video signals.

A coder which is a part of CODEC circuit is used to encode the input information.

A program that, according to the processor specification, generates machine codes
from high level language. The codes are called object codes.

Cycle

DAC

Decoder
Demultiplexer

Design metrics

Device Driver

Device Manager
Device Programmer

Embedded system

File System

FPGA

GPP (General-purpose
processor)
Input Output (I0) ports

Interrupt controller
(handler)

Embedded Systems

n

A cycle consists of fetch of an instruction from RAM/ROM, its executlonsﬂ the
processor and writing back the results of the operations.

Digital bits (8 or 10 or 12) converted to analog signal scaled to a reference voltage
When all input bits equal 1, then analog output equals the difference between the
positive and negative reference pin voltages; when all input bits equal 0, theﬁ the
analog output equals negative pin reference voltage. 5

A decoder circuit that decodes the input address and activates a selected oﬁtput
among the many outputs. It is used for selecting one among several addressable
units. A decoder also decodes the encoded bits and generates the output bits, $

or information. ;

A digital circuit that has digital outputs in multiple channels. The channel to ¥
output is sent from the input is the one that is addressed by the channel addresé bits
at the demultiplexer input. A demultiplexer takes the input and transfers 'nito a
select channel output among the multiple output channels.

The parameters that define design requirements and must be kept in view dnrmg
each stage of design process.

High level language functions, such as open (configure), connect, bind, hstemkead
or write or close the device. Each function calls an interrupt service re\#tme
(software) that runs after the programming of control register (or word) of a
peripheral device (or virtual device) to allow the device inputs or outputs:|The
routine reads the status register for device status, gets the inputs from the device
and writes the output to the device

Software to manage multiple devices and their drivers. g

It takes the inputs from a file generated by the locator and burns the fusable hljk to
actually store the data and system codes at the ROM. »

A system that has embedded software in a computer-hardware that makes it a syttem
dedicated for an application or a specific part of an application or product, or apan
of a larger system.

A data structure (or virtual device) that sends the records (characters or wordd toa
data sink (for example, a program) and that stores the data from the data sourcei (for
example, a program). A file in a computer may also be stored in the hard digk.

A file system specifies the ways a file can be created, called, named, used, copled
saved or deleted.

These are Field Programmable Gate Arrays on a chip. The chip has a large nméxber
of arrays with each element having links. Each element of array consists of several
XOR, AND, OR, multiplexer, demultiplexer and tristate gates. Complex digital
circuit functions are created by appropriate programming of the links on transfemng
data from memory. ;

A processor from a number of families of processors, microcontrollers, ;
embedded processors and digital signal processors (DSPs) having a general-pu
instruction set and readily available compilers to enable programming in i 1gh
level langunage. l

The system gets the inputs and outputs from these. Through these, the keypdd or
LCD units or touchscreen or peripherals and external systems connect to the sﬁim
pt

A unit that controls (handles) processor operations arising out of an int
from a source.

H

lmm&hction to Embedded Systems

Kerel

Mfk and ROM mask

M?gow

Memory Stick
;

M;&iplexer
i

|

M%rocomller

Mé)iiem

king
Pksical Device
Ptjfe

b

Phocess

An OS program with the following functions: memory allocation and deallocation,
task scheduling, interprocess communication, effective management of shared
memory access by using signals, exception (error) handling signals, semaphores,
queues, mailboxes, pipes and sockets /O management, file system, interrupts control
(handler), device drivers and device management.

Liquid crystal display—a crystal that absorbs or emits light on application of 3 to

4V 50 or 60 Hz voltage pulses with currents ~ 50 pA. Multisegment and multiline

LCD units are used for a display of digits, characters, charts, pictograms and short
messages with very low power dissipation.

Light Emitting diode—a diode that emits red, green, yellow or infrared light on

forward biasing between 1.6 V to 2 V and currents between 8—15 mA. Multisegment

and multiline LED units are used for bright display of digits, characters, charts and
short messages.

A program that links the compiled codes with other codes and provides input fora
loader or locator.

A program that reallocates the physical memory addresses for loading into the
system RAM memory. Reallocation is necessary, as the available memory may not
start from 0x0000 at any given instant of processing in a computer. The loader is a
part of the OS in a computer.

A program to reallocate the linked files of the program application and the RTOS

codes at the actual addresses of the ROM memory. It creates a file in a standard
format. The file is called a ROM image.

. Created at a foundry for fabrication of a chip. The ROM mask is created from a

ROM image file.

This stores all the programs, input data and output data. The processor fetches
instructions from it and gives the processed results back to it.

A memory stick (card) is unit of memory for video, images, songs, or speeches and
is used as large storage in digital camera and mobile systems. For example, Sony
memory stick Micro (M2) has size 15x12.5x1.2 mm? and functions as flash memory
of 2GB.]

A digital circuit that has digital inputs at any instance in multiple channels. The
channel for which the output is sent from the input is the one that is addressed by
the channel address bits at the multiplexer input. A multiplexer takes the input
among the multiple input channels and transfers a selected channel input to the
output channel.

A unit with a processor. Memory, timers, a watchdog timer, interrupt controller,

ADC or PWM, and so on are provided as required by the application.

A circuit to modulate the outgoing bits into pulses usually used on the telephone
line and to demodulate the incoming pulses into bits for incoming messages.
Processing codes for the different tasks as directed by the OS.

A device like a printer or keypad connected to the system port.

A data structure (or virtual device), which is sent a byte stream from a data source

(for example, a program) and which delivers the byte stream to a data sink (for
example, a printer).

A program or task or thread that has a distinct memory allocation of its own and
has one or more functions or procedures for a specific job. The process may share

Processor

Pulse Width Modulator
(PWM)

Real-time operating system

RAM
Registers
Reset

Reset circuit

ROM
System
System on Chip

Timer

Touchscreen

UART
Virtual Device

VLSI chip
Watchdog timer

either by the finger or by a stylus. A stylus is thin pencil-shaped object, It i 1;

reading and wntmg similar to a physncal device.

Embedded Sy§§ems

the memory (data) with other tasks. A processor may run multiple proasses
separately or concurrently as directed by the OS.

A processor execntes the instruction cycles and executes one process or . Ay as
per the command (instruction) given to it.

A modulator that modulates the pulse width as per the input bits. It provides & ‘ulsc
of width scaled to the analog output desired. On i integrating PWM output the defxred
DAC operation is achieved. :

Operating system software for real-time programmin g and scheda 'n g,
process and memory manager, device drivers, device management and multitag

This is a random access read and write memory that the Processor uses tQ tore
programs and data that are volatile and which disappear on power down oré\?/hen
switched off. P

These are associated with the processor and temporarily store the valiable
values from the memory and from the execution unit during processmg «of an
instruction. ;;; .

A processor state in which the processor registers acquire initial values and; m
which starts an initial program; this program is usually the one that also runk on
power up. :
A circuit to force a reset state that gets activated for a short period on po up.
When reset is activated, the processor generates a reset signal for the other sj;{ tem
units needing reset.

A read only memory that locates the following in it—embedded software, i
data and strings and operating system or RTOS. 5

A way of working, organizing or doing one or a series of tasks by followmg a ed
plan, program and set of rules.

A system on a VLSI chip that has all the necessary needed analog as well as &gital
circuits; for example, in a mobile phone. ;

K;
A unit to provide the time for the system clock and real-time operanon; and
scheduling. It generates interrupts on timeouts as per the preset time or on ov flow
or on successful comparison of present time with a preset time or on capturing the
time on an event. ;

An input as well as an output device that is used to enter a command, chobse a
menu or to give user reply as input by physically touching at a screen po" i

between the fingers and used just as a pen is used to mark a dot The screen displa

display.

Universal Asynchronous Receiver and Transmitter.
A file or socket or pipe-like device that is programmable for opening, ck

A timer that resets the processor in case the program gets stuck for an unexp _ted
length of time. L

Introfi.lction to Embedded Systems

11.

12.

13.
14.
15.
16.
17.

18.
19.
20.
2L
22.

23.
24,
25.
26.
27.
28.
29.
30.
31
32.

33.
34

Review Questions

Define a system. Now define an embedded system.

What are the essential structural units in the following? (a) a microprocessor (b) an embedded processor
(c) a microcontroller (d) a DSP (e) an ASIP. List each of these.

How does a DSP differ from a general-purpose processor (GPP)? [Sections 1.2.1, 1.7.3 and 2.3.3].

What are the advantages and disadvantages of the following? (a) a processor with only a fixed-point arithmetic unit
and (b) a processor with additional floating-point arithmetic processing unit.

How does a microcontroller differ from a DSP? [Sections 1.2.3, 1.7.2, 2.1 and 2.3.5].

Explain single purpose processors use in convergence technology embedded systems (a) smart mobile phone with
mail client, Internet connectivity and image-frame downloads and (b) digital camera.

Compare features in a family chip (or core) of each of the following: a microprocessor, microcontroller, RISC
processor, DSP and ASSP.

Why do later generation systems operate the processor at low voltages (< 2 V) and perform IOs at (~3.3 V)?
'What are the techniques of power and energy management in a system?

. 'What is the advantage of running a processor at reduced clock speed in certain sections of instructions and at full

speed in other sections?

What is the advantage of the following? (a) Stop instruction (b) Wait instruction (c) Processor idle mode operation
(d) Cache-use disable instruction (¢) Cache with multiways and blocks in an embedded system.

What do we mean by charge pump? How does a charge pump supply power in an embedded system without using
power-supply lines?

What do you mean by ‘real time’ and ‘real time clock’?

What is the role of processor reset and system reset?

Explain the need of watchdog timer and reset after the watched time.

What is the role of RAM in an embedded system?

‘Why do we need multiple actions and multiple controlling tasks for devices in an embedded system? Explain, using

as an example the embedded system, the remote of colour TV.

When do we need multitasking OS?

When do we need an RTOS?

Why should the embedded system RTOS be scalable?

Explain the terms IP core, FPGA, CPLD, PLA and PAL

What do you mean by System-on-Chip (SoC)? How will the definition of an embedded system change with a

,System-on-Chip?

What are the advantages offered by an FPGA for designing an embedded system?
What are the advantages offered by an ASIC for designing an embedded system?
What are the advantages offered by an ASIP for designing an embedded system?

‘Real time video processing needs sophisticated embedded systems with hard real time constraints. Why? Explain.
"'Why does a processor system always need an ‘Interrupts Handler (Interrupt Controller)’?

What role does a linker play?

Why do we use a loader in a computer system and a locator in an embedded system?

Why does a program reside in the ROM in the embedded system?

Define ROM image and explain each section of an ROM image in a system.

When is the compressed program and data in ROM used? Give five examples of embedded systems having these
in their ROM images.

When is SRAM used and when DRAM? Explain your answers.

What do we mean by the following: physical device, virtual device, plug and play device, bus self-powered device,
device management and device-specific processor.

Embedded Sysfems

3s.

36.
37.

38.

39.

40.

41.

42.

43.

45.

46.
47.

48.

49.
50.
51.
52.
53.

54.

Define design metrics in embedded systems. What are the different competing design metrics? What are the constraints
of embedded system design?

How is power dissipation optimized?

What are the chatlenges faced in designing an embedded system?

k-/. Practice Exercises

Search for the definitions of embedded system in the books referred to in the ‘References’ section and tabulate
these with the definitions in column 1 and the reference names in column 2.

Classify the embedded systems into small scale, medium scale and sophisticated systems. Now, reclassify these
embedded systems with and without real-time (response time constrained) systems and give 10 examples of each.
An automobile cruise control system is to be designed in a project. What will be skills needed in the team of
hardware and software engineers?

Take a value, x = 1.7320508075688. It is squared once again by a floating-point arithmetic processor unit. Now x
is squared by a 16-bit integer fixed point arithmetic processing unit. How does the result differ? [Note: Fixed-point
unit will multiply only 17320 with 17320, divide the result by 10000 and then again divide the result by 10000.]
Design a four-column table. Write two examples of embedded systems in columns 2 and 3. In Column 1, write the
type of processor needed among the following: microprocessor, microcontroller, embedded processor, digital signal
processor, ASSP, single purpose and media processor. Give your reasoning in column 4.

Why does a CMOS 1O circuit power dissipation reduce by compared.to 5 V, factor of half, ~(3.3/5)%in 1033V
operation? '

What will be the reduction in power dissipation for a CMOS circuit when voltage reduces froma5 Vtoa 1.8 V
operation?

List the various type of memories and application of each in the following: robot, electronic smart weight display
system, ECG LCD display-cum-recorder, router, digital camera, speech processing, smart card, embedded firewall/
router, mail client card, and transreceiver system with collision control and jabber control. [Collision control means
transmission and reception when no other system on the network is using the network. Jabber control means
control of continuous streams of random data flowing on a network, which eventually chokes a network.]
Tabulate hardware units needed in each of the systems: camera, mobile computer and robot.

Give two examples of embedded systems, which need one or more of following units. (a) DAC (Using a PWM)
(b) ADC (c) LCD display (d) LED displays (e) Keypad.(f) Pulse dialer (g) Modem (h) Transreceiver.

An ADC is a 10-bit ADC. It has reference voltages, V. =0.0 V and V., = 1.023 V. What will be the ADC outputs
when inputs are (a) -0.512 V (b) +0.512 V and (c) +2047V? What will be the ADC outputs in three situations when
(1) Vier. = 0.512 V and Vo, = 1.023 V (ii) V. = 1.024 V and V ;, = 2.047 V and (ii) Vier- = -1.024 V and
Vet = +2.047 V.

Tabulate the advantages and disadvantages of using coding languages as follows: (a) Machine coding (b) Assembly
(c) C (d) C++ and (e) Java. -

List the software tools needed in designing each of the embedded system—camera, mobile phone and robot.
Justify the use of physical and virtual devices drivers in embedded systems.

The cost of designing an embedded system may be thousands of times the cost of its processor and hardware units.
Explain this statement.

An FPGA (Field Programmable Gate Arrays) core integrated with a single or multiple processor unit on chip, How
do these help in the design of sophisticated embedded systems for real time video processing?

List the memory units and processor needed in a smart card.

8051 and Advanced
Processor Architectures,
Memory Organization
and Real-world
Interfacing

The previous chapter dealt with the following:

Embedded system embeds software and RTOS.

Embedded system embeds software in hardware
consisting of microprocessor or microcontroller
or DSP or ASIP and single purpose processors.

Embedded system has memory (ROM, RAM and
caches), ports, timers, devices and interfacing
circuits.

Microcontroller hardware consists of processing
unit, RAM, ROM, timing and interrupt handling
devices and other application specific units as a
single chip or VLSI core.

Design metrics, processes and challenges.
Software, device drivers and device-manager.

Software tools.

L

y
a
R
N
I

N
G

LR R~ OB S ® O

In this chapter, we will learn the following

1.

N

Sk W

~ O N0 %N

8051 architecture in brief and its processor, memory, ports, counters/nmers
serial 10 and interrupt handler units

Real world interfacing, and internal and external buses that interconnect the
processor with the system memories, 10 devices and all other system units
Interfacing examples with keyboard, displays, ADC and DACs

Advanced processors x86, ARM and SHARC architectures

Processor and memory organization

Instruction-level parallelism and superscalar, processing, pipelining and cache
units for improved computational performance of the processor by faster
program execution

Various types of memory and their uses

Devices and memory addresses allocations

Performance metrics to measure the performance of a processor

Processor selection for embedded system

Memory selection for embedded system

~ 2.1 8051 ARCHITECTURE

The

following subsections summarize the 8051 architecture in brief. A reader may

refer to a standard text for details.

2.1.1 8051 Microcontroller Architecture

Figure 2.1 shows the architecture of the classic 8051 microcontroller. Classic means
the original version, based upon which new enhancements and versions are provided.

The

classic version consists of following hardware:

1. A 12 MHz clock. Processor instruction cycle time is 1 s.

2. An 8-bit ALU. The internal bus width is 8-bit.

3. CISC (Complex Instruction Set Computer) architecture. [CISC provides many
modes for addressing operands in arithmetic, logical and other instructions.
Several complex instructions take more than one cycle time. Complex
instructions implement in hardware not by separate hardwired logic-circuits
for each instruction but by a microprogram control circuit.]

4. Special bit manipulation instructions.

5. A program counter, in which the initial default reset value defined by the
processor is 0x0000.

6. A stack pointer, in which the initial default value defined by the processor is
0x07.

80#4 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

[Reset]

fro | []| s || wor | Osc Port P1

1 4 |

l IR] ; Execution unit] | | SFRslOand
devices
[1D }——j
ALU — A, B, PSW, SP SFRs

Y —{ DPTR (2 SFRs)]
Condition test branch logic

| -Register Banks of 8 registers

Y Y

%ontrol and Sequencing Circuit —(ROM and RAM J

| PortP3
I v [Porre |
i Interrupt Control Circuit I

[As-ms] l ADO - AD8 |

10.

11.

12.
13.

Fig. 2.1 8051 Architecture

A simple architecture, with no floating-point processor, no cache, no memory management unit, no
atomic operations unit, no pipeline and no instruction level parallelism. (Sections 2.3 and 2.5). There
is no DMA controller (Section 4.8) in the classic and most other versions.

A Harvard memory architecture (Section 2.4.2). The program memory and data memory have separate
address spaces from 0x0000 and separate control signal(s).

On-chip RAM of 128 bytes. The 8052 version provides for RAM of 256 bytes; 32 bytes of RAM are
also used as four banks (sets) of registers. Each register-set (bank) thus has eight registers. The external
data/stack memory can be added upto 64 kB in most versions. In certain 8051 enhancements, this limit
has been enhanced to 16 MB.

There are special function registers (SFRs). These are PSW (processor status word), A (accumulator),
B register, SP (stack pointer) and registers for serial 1Os, timers, ports and interrupt handler.

8351 version has on-chip ROM; 8751 version EPROM; 8951 version has on-chip EEPROM or flash
memory of 4 kB. Several versions provide for higher capacity ROM. Additional program memory can
be added externally upto 64 kB. In extended 8051 and unified address space versions (8051 EX and
MX versions), this limit has been extended to 16 MB.

Two external interrupt pins, INTO and INT1.

Four ports PO, P1, P2 and P3 of 8 bits each in single chip mode. (Section 2.1.3) There are two timers
(Section 2.1.5) and a serial interface (SI). It can be programmed for three full duplex UART modes for
a serial I0. [10 with each bit of a word successive transmitted on the data line for a time interval.] The
SI can also be programmed for half duplex synchronous IO (Section 2.1.6).

Embedded Syskms

14." Classic version has no pulse width modulator and provides on support to DAC. (Section 1.3.7) It has
no modem, no watchdog timer, no ADC. Certain versions support watchdog timer and ADC. Siemens
SAB 80535-N supports ADC with programmable reference voltage. Advanced versions support these
features and choice of version depends on system requirement. (Section 2.8 and 2.9).

2.1.2 Instruction Set

Figure 2.2 shows instruction types in the 8051 set. There are seven types of instructions.
Full instruction set and instructions in detail can be referred to from a microcontroller text or manual. The
important instructions are as follows:

Data Transfer Instructions Data transfer instructions move (copy) one source operand to another
destination. MOV A, R, and MOV R, A are for moving (copying) the data into A from R andtoR. R, is
the n'" register in a set of 8 registers. PSW bits RSO and RS1 predefine the set.

Data transfer instructions MOV A, @R; and MOV @R;, A are for moving (copying) the data into A from
@R; and to @R;. R is the i™ register in a set of 8 registers. PSW bits RSO and RS1 predefine the set. @R, means
data transfer to an 8-bit address pointed by the contents of the ith register in the set.

Four data transfer instructions are MOV direct, #data, MOV A, #data, MOV R,, #data and
MOV @R;, #data for moving 8-bit data into direct or A or R, or @R, Direct means data transfer to an 8-bit
address of internal 128B RAM or SFR address. @R, means data transfer to an 8-bit address pointed by the
contents of the i register in the set (i = 0 or i).

Seven data transfer instructions are MOV direct,direct, MOV A,direct, MOV direct, A,
MOV direct,R,, MOV R,,direct, MOV direct,@R;, and MOV @R;, direct are for moving
data between the 8-bit direct address to direct or A or R, or @R;. Direct means data transfer to or from an 8-
bit address of internal 128B RAM or SFR address. @R; means data transfer to an 8-bit address pointed by
contents of i" register in the set (i=0 or 1).

There is a 16-bit external memory data pointer, DPTR. The MOV DPTR, datal6 instruction is used to
send 16 bits specified in datal6 to DPTR.

MOVX (move external instruction) will transfer the data to or from external data memory. These instructions
are MOVX A, @DPTR and MOVX @DPTR, A. @DPTR means address as pointed by 16 bits of DPTR. For
an 8-bit external memory address, instead of DPTR, @R; is used (i = 0 or 1). MOVC (move code from
external program memory instruction) will transfer the data from the external program memory. Instructions
are MOVC A, @A + DPTR and MOVC A, @A + PC.

For stack operations, there are PUSH direct and POP direct instructions.

Bit Manipulation Instructions Each bit of certain SFRs and an 8-byte internal RAM are assigned bit
addresses in 8051 hardware. There are bit manipulation instructions to clear, set, AND, OR, MOV the bit.

Byte Manipulation Instructions There are byte manipulation instructions to rotate right A, rotate left

A, rotate right A with carry, rotate left A with carry, complement A, clear A and swap with A lower and upper
nibble (set of 4 bits).

Arithmetic Instructions Arithmetic instructions of the source operand is stored in the accumulator and

the result of the operation is also stored in the accumulator. For example, ADD A, R,. It adds the byte in A
with the byte in the n® register. (A « A + R,). Three arithmetic instructions are ADD, ADDC (add including
carry bit) and SBBB (subtract including borrow bit). Carry bit is set to 1 when an operation results in carry or

8051§ and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

borrow. Borrow is saved in the carry bit. The second operand can be R,, direct, @R, or #data (=0 or 1). The
meaning of these is the same as in case of data transferred instructions (explained earlier). There is also an
instruction to adjust hexadecimal addition to decimal addition.

Data Transfer instructions
» Move byte between accumulator (an SFR) and register at a
register bank
Move byte from an SFR/internal RAM to another direct
Move indirect
Move immediate, MOV immediate DPTR
MOVC and MOVX indirect
PUSH direct, Pop direct

Bit Manipulation (Boolean processing Instructions)
+ Clear, Set, Complement, AND or OR or MOV the bit

Byte Manipulation Instruction
» Clear, Complement, Swap and Rotate Instructions

Logic Instructions
« AND, XOR, OR Operation Instructions

Arithmetic Instructions
« Arithmetic Instructions
« Increment-Decrement Instructions

Program Flow Control Instructions

+ Branch instructions
Conditional jumps :
Decrement and Jump conditional
Compare and then conditional jump
Subroutine Call Instructions
NOP
Delay

Interrupt Flow Control Instructions
« Interrupt flow control- mask bits, priority bits
« RETI

Fig. 2.2 Instruction types in 8051 instruction set

INC and DEC instructions increase (by 1) and decrease (by 1) the bits at the source. The source can be R,
direct, @R, or A.

MUI, ABand DIV AB are used to find A — B < A x B and A - B « A + B. The multiplication results in
lower byte in A and higher in B. Division results quotient is stored in A and the remainder in B.

Logic Instructions Logic instructions one of the source operand is accumulator or direct and result of
operation is also in the accumulator or direct. For example, ANL A, R, and ANL. direct, R,.Itlogical ANDs
the byte in A or direct with the byte in n™ register in the register set. (A <— A . R,). Three logic instructions are
ANL (AND logic), ORL (OR logic) and XRL (XOR logic). The second source operand is @R, or R, or direct
when the first source cum destination is A, and is A and #data when the first source cum destination is direct.
[Meaning of these are the same as in the case of the data transfer instructions (explained earlier).]

Embedded Syg?ems

Program Flow Control Instructions Program flow control is done by instructions for short jump,
absolute jump or long jump or jump. Short jump instruction is to a relative address within —128 and +127.
Absolute jump instruction is to direct 11-bit address in program memory. Long jump instruction is to.direct
16-bit address in program memory. Jump instruction is pointed by A + @DPTR.

Conditional program flow control instructions are also present. Loop control instructions are also present
in which jump count value is in R, or direct, and offset. Both are specified in the loop control instruction.

Program flow control in a subroutine call is by absolute call or long call instruction. Absolute call instruction
is to call a specified direct 11-bit address at program memory. Long call instruction is to call a specified direct
16-bit address directly at program memory.

Return from a called routine is by RET instruction and return from interrupt service routine is by RETI.

2.1.3 10 Ports, Circuits and 10 Programming

Figure 2.3(a) shows PO, P1, P2 and P3 IO ports in 8051. 8051 in single chip mode has four ports. Single chip
means there are no external memory chips or ports or serial port or peripheral attached to the port. Section 2.1.4
will give an expanded mode circuit.

Port driving capabilities depend on the specific version of 8051. PO is an 8-bit open drain bidirectional 10
port and P1 to P3 are quasi bidirectional 10 ports. Open drain port means that the output port pins need a pull
up circuit or resistance to raise the voltage level to logic 1. A quasi bidirectional 10 port can drive for two
clock cycles eight logic LSTTL gates in 8051. For higher driving capability, pull up circuits will be required.
Port P1 bits are open drain in P83C538 version as two bits P1.6 and P1.7 are used for IC bus (Section 3.10. 1
clock and data signals.

10 Port Circuits Sections 2.2.6 and 3.3 will describe the interfacing circuit of port IO bits to switches, keypad,
encoders, motors and LCD controllers. Figures 2.3(b) and (c) show IO port P1 circuits for two stepper motors in
a printer and six servomotors in a robot. IO port bytes and bits are programmed and accessed as follows:

(i) 10 Byte Programming The internal IO ports PO, P1, P2 and P3 in the 8051 have byte addresses
to access and perform read, write or other operations. These addresses are the direct 8-bit addresses of
each that are specified in the instructions. Addresses of bytes at PO, P1, P2 and P3 have 0x80, 0x90,
0xAO0 and 0xBO. All instructions in the instruction set using direct addresses can be used to access and
perform read or write operations on the ports.

(ii) 1O Port Bit Programming Each port PO, P1, P2 and P3 has 8 bits and each bit has addresses to
access and perform read or write operations using bit-manipulation instructions. These addresses are
the bit address of 8 bits, which are specified in the instructions. Bits P0.0 to P0.7 have addresses 0x80
to 0x87. Bits P0.0 to P0.7 have addresses 0x80 to 0x87. Bits P1.0 to P1.7 have addresses 0x90 to
0x97, P2.0 to P2.7, 0xAO to 0xA7 and P3.0 to P3.7 0xBO to 0xB7. All instructions in the instruction
set using bit addresses can be used to access and perform complement or read or write operations; The
C flag in PSW is the accumulator for logic operations on the bits using bit-addresses. ‘

Example 2.1

1. MOV 0xA0, #O0xFF will move bits to port P2 and P2 bits will become = 11111111,
2. MOV 0x90, #0x1C will move bits at port P1 = 00011100, After this instruction,
INC 0x90 will make P1=00011100, + 1 = 00011101,,

805‘5’3&"(1 Advanced Processor Architectures, Memory Organization and Real-worlu nterfacing

P3.0 P3.1 P3.2 P3.5 3.4 P3.5 P3.6 P3.7 P1.0P1.1 P1.2P1.3P14P15P1.6 P17
Also RxD/Syn cata, TxD/Sync Clk, Also P1.6 as I2C clock, P1.7 as 12C serial
INTO/GTO, INT1/GT1, TO, T1, WR, RD data, and 1.0 and P1.1 for T2 8052
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 PO.7 P2.0P2.1P2.2P23P24P25P2.6 P2.7
Alsoas *Tv- AD7 Also as A8 - AlS5

(@

rStepper Motors 1 & 2 l

P1.0 Coil A P13 Coil A’
P11 Coil B P14 Coil B’
P1.2 Coil C P1.5 Coil C’
P1.3 Coil D P1.6 Coil D’
(b)

P1.0 Servomotor 1

P1.1 Servomotor 2

P1.0 Servomotor 3

P1.1 Servomotor 4

P1.0 Servomotor 5

P11 Servomotor 6

(0

Fig. 2.3 (a) 10 ports in 8051 (b) 10 port P1 circuit for two stepper motors in a printer
(c) 10 port circuit for six servo motors in a robot

!

E)?:ample 2.2
1. CPL 0x90 will complement the bit O at port P1.

2. CLR 0x80 will make P0.0 as 0. Now after a delay of period=T1, the SETB 0x80 will make P0.0
;. as 1. Now after a delay of period = T2, the CLRB 0x80 will make gain P0.0 as 0. A pulse of time-
- period T2 and duty cycle 100 T1/T1 + T2) creates if the instructions are executed in a loop.

3. SETB C will set carry bit in PSW to 1. After this operation, ANL C, 0x93 will perform logic AND
| . operation between bits C and P1.3 and result will be in C. If P1.3 = 0 then C will become 0 else C will

remain 1.

4, CLR C will reset (clear) carry bit in PSW to 0. After the operation, ORL C, 0xB2 instruction

will perform logic OR operation between bits C and P3.2 and result will be in C.IfP3.2=0

. then C will remain 0 else C will remain 1. After the operation, MOV 0x85, C instruction
.+ will move result in C to PO.5.

Embedded Systems

2.1.4 External Memory Interfacing Circuits

Figure 2.4(a) shows how to connect the external program and data memory circuits in 8051. There are two
sets of memory, program memory and data memory. The processor has two control signals PSEN and RD
to control read from program or data memory. The processor has a control signal ALE to control use of ADO-
AD7 as address or data at a given instance. Section 2.2.1 will explain PSEN, RD and ALE control signals.
1. Port PO is used in expanded mode as ADO-AD7. ADO-AD?7 are the multiplexed signals of the AO-A7
lower address bits of the address bus and D0-D7 bits of data bus. AO-A7 and DO-D7 are time division
multiplexed. For an interval the processor activates ALE (address latch enable) in an instruction
cycle and the ADO-AD?7 lines have A0-A7; a latch-circuit separates A0-A7 signals for the memory.
2. Port P2 has A8-A15 address signals. When the processor activates PSEN (Program store enable), it
reads the byte from the external program memory through the D0-D7 data bus. When the processor
activates RD (read), it reads the byte from the external data memory through the DO-D7 data bus.

For addresses outside the internal RAM, SFR and internal program memory, the processor always accesses
the external memory. That is irrespective of external enable EA active or inactive. Internal RAM and SFR
addresses between 0x00 and OxFF are the same as external memory addresses 0x0000 and OxFFFF. Internal
program memory addresses between 0x0000 to OXFFF (in case of 4 kB internal ROM) are the same as the
external program memory addresses 0x0000 and OxFFFE. When a control signal EA activates, the processor
accesses the external addresses in the memory instead of these internal memory or register addresses.

The 8051 has a memory mapped IO (Section 2.2.2). Memory and ports are assigned addresses such that
each has a distinct range of addresses in the data memory address space. Therefore, interfacing circuit design
is identical to that for the memory and connects the external ports and programmable peripheral interface
(PPI). Memory and ports are assigned the addresses such that each has a distinct range of addresses. A PPI
chip is 8255. Figure 2.4(b) shows the interfacing when using the external PPI ports PA, PB and PC.

2.1.5 Counters and Timers

Figure 2.5 shows the specifications of counters and timers, TO and T1 in 8051. There are two timing and
counting devices TO and T1 in classic 8051 and three TO, T1 and T2 in 8052. Using the two SFRs, TH1-TL1,
the counts at the higher and lower 8 bits of T1 are accessed. The SFRs hold the T1 device 16 bits. Using two
SFRs, THO-TLO, the higher and lower 8 bits of TO are accessed. The SFRs hold the TO device 16 bits.

An SFR called TMOD controls the T1 and TO modes using the upper and lower 4 bits each, which programs
the counting/timing of T1 and TO. A bit for each controls whether the external gate input controls or not.
Another bit controls whether counter or timer mode is used. Two other bits control the functional mode of
timer/counter as mode 0 or 1 or 2.

The counting/timing device records time when inputs are given by the clock. The clock pulses are internally
given at the specific time intervals in case of functioning as timer. It also records counts when the inputs are
given externally. The counter is given the input to count from external input pins.

1. When timing or counting devices are externally controlled by the gate inputs, when GTO or GT1 is
externally activated, the device can function; else, it deactivates in gate input mode. GTO or GT1
signals are given through the P3.2 and P3.3.

2. When TO is in counter mode, it is given the input to count from the external input pin TO at P3.4. When
Tl is in counter mode, it is given the input to count from the external input pin T1 at P3.5.

The upper four 4 bits of an SFR, called the TCON, programs the counting/timing device in T1 and TO
modes. TCON.7 and TCON.5 show the timer/counter overflow status for T1 and TO, respectively. TCON.6

8051 M Advanced Processor Architectures, Memory Organization and Real-world Interfacing

EA
. PO ALE]
x| ADO-AD7 | lach [TAo-A7 | Progam
AD7 ' Memory
e 0X0000 - OXFFFF
as e NB B
, 2?—5 =T Data Memory
0x0000 - OXFFFF
‘ — RD
PSEN WR
EA-T T >
EA
PO ALE Latch
B | ADO-AD7
AD7 LAt Pﬁ;o
I'm PA7
Latch Decoder > 8255
AE—~ A2 -A7 b
= PB.7
e AB-A15
Ae- 2 :
'A15 P3.6 (WR) > {Po0
P3.7 (RD) > L |PC7

Fig. 2.4 (a) Connection of 8051 to external program and data memory circuits
(b) Interfacing of 8051 to external PP 8255 ports PA, PB and PC

and TCON.4 control the start and stop of the timer/counter overflow status for T1 and TO, respectively. The
lower bits of the TCON are used for interrupt control for INTO and INT1 (Section 2.1.7).

2.1.6 Serial Data Communication Input/Output

Figure 2.6 shows serial ports and data serial communication using SI (serial interface) in 8051.
There are two SI modes: half duplex synchronous and full-duplex asynchronous. Half duplex means one-
way communication and full duplex means both ways at the same instance.

Embedded Systems

P3.2, P3.3, P3.4 and P3.5 as GTO (gate for starting/stopping T1), GT1 (gate for starting/stopping T1 % TO
{count inputto T0) and T1 (count input to T1) inputs, respectively when TMOD bits 3, 7, 2 and 6 are setto

ol

Timer/Counter TO ’ 3
* 8-bitSFRsused are TMOD (lower 4 bits), TCON (bit 5 and 4), TLO (countftime bits), THO (count/time bits)
* Counter with inputs at P3.4 when bit 2 at TMOD =1, timer with intemal docktimedinputswhenbitZatTMOQi:o

* When mode set = 0, 8-bit timer/Counter mode. THO is used as T0 and TLO is used for prescaling (diviqﬁmg)
countor clock inputs by 32 :

* When mode set = 1, 16-bittimer/counter mode with THO-TLO is used for timing or counting using T0 1!

* When mode set = 2, 8-bit timer/Counter. THO is used as T0 and TLO is used for auto-reloading the THO iter
timeout using a presetvalueat TLO e

* When mode set = 3, two 8-bit timer/Counters mode THO and TLO are independent 8-bit timer/counters andT1
does not function :

Timer/Counter T1
* 8-bitSFRsused TMOD (upper 4 bits), TCON (bit 7 and 6), TL1 (count/time bits), TH1 (count/time bits) |
* Counter with inputs at P3.5 when bit 6 at TMOD=1,timerwithintemaldodttimedinputswhenbitGatTMODéo
* When mode set = 0, 8-bit timer/Counter mode and TH1 is used and TL1 is used for prescaling (dividing) inputs
by 32 &
* When mode set = 1, 16-bittimer/counter mode with TH1-TL1 is used for timing or counting 4

* When mode set = 2, 8-bit timer/Counter TH1 is used and TL1 is used for auto-reloading the TH1 after tirn%ut
using apresetvalue at TL1 ;i

* Whenmode set =3, T1 stops as THO now functions as independent 8-bit timer in place of T1 i

Fig. 2.5 Counter-cum-timers TO and T1 in 8051

P3.0 and P3.1 as pins for RxD and TxD UART mode serial input and output , or synchronous serial mode
dataandclockinputs, orsynchronous serial mode data and clock outputs, respectively §

Serial Interface Sl (programmabie for half duplex synchronous serial or full duplex asynchronous UART modes) 3
* 8-bitSFRsused are SBUF (8-serial received bits or transmission bits register depending upon instructior i
using SBUF as source or destination), SCON (8-serial modes cum control bits register) and SFR PCON
7thbit are used }
* Synchronous serial mode data and clock inputs, or synchronous serial mode data and clock outplg
depending upon instruction is using SBUF as source or destination when SCON bits 7 and 6 are ,
(mode 0)
* 10-bit (start plus 8- serial data plus stop total 10 bits) UART mode serial input and output with programmabié
baud rate using T1 or TO timers (T2 in 8052) when SCON bits 7 and 6 are 01 (mode 1) &
* 11-bit (start plus 8- serial data plus RB8 or TB8-bit plus stop total 11 bits) UART mode serial input and outpxs
with fixed baud rate of (f/32)+12 or (#/64)+12 Mbaud/s where f = crystal frequency. The rate depends upon
PCON 7-bit SMOD = 1 or 0, respectively when SCON bits 7 and 6 are 10 (mode 2) |
* 11-bit (start plus 8- serial data plus RB8 or TB8-bit plus stop total 11 bits) UART mode serial input and outpd(
with programmable baud rate using T1 or TO timers (T2in 8052) when SCON bits 7 and 6 are 11 (mode 2) ;

Fig. 2.6 Serial ports and data serial communication using Sl (serial interface) in 8051

8051 ‘md Advanced Processor Architectures, Memory Organization and Real-world Interfacing

Using the single SFR for transmit and receive byte buffers, the serial output or input is sent. The SFRs hold
the SI transmission 8 bits when it is written. 0x99 is the address of SI buffers. For example, MOV 0x99, A
instruction writes into transmission buffer from the A register and MOV R1, 0x99 instruction reads the R1
register from the receive buffer.

An SFR called SCON controls the SI interface. Three upper bits program the modes as 0, 1, 2 or 3. Mode
0 is half duplex synchronous. Modes 1 or 2 or 3 are full duplex asynchronous. Mode 2 transmits and receives
in 11 T format and mode 1 in 10T format. T is the interval between successive transmitted or received bits and
T-! is the baud rate. (Section 3.2.3 gives the details). Modes 1 and 3 are for programmable baud rate and 2 for
fixed baud rate.

A bit SCON.4 enables or disables SI receiver functions. Two bits SCON.3 and SCON.2 specify the 8" bit
to be transmitted and 8% bit received when the mode is 2 or 3. A bit SCON.1 enables or disables SI transmitter
interrupts (TI) on completion of transmission. A bit SCON.0 enables or disables SI receiver interrupts (RI) on
completion of transmission.

2.1.7 Interrupts in 8051

Figure 2.7 shows the specifications of system of interrupts in classic 8051. There are multiple interrupts in
8051. When an interrupt is enabled (not masked), then on occurrence of that interrupt event, an ISR is called.

e P3.2 and P3.3 as pins for INTO and INTI external interrupt pins when bit 7 at IE (interrupt enable SFR) EA
(enable all) bitis 1, and bits 0and 2 are 1 and 1, respectively.

- Interrupt Sources

. ¢ 8-bitSFRsused are IE (one interrupt enable all EA bit to enable interrupts and remaining enable individual
interrupts bits) and IP {individual interrupt priorities set high or low bits)

External INTO interrupt

T0 overflow interrupt

External INT1 interrupt

T1 overfiow interrupt

Sl serial UART or Synchronous mode interrupt

Sl synchronous serial mode interrupt (separate in few families of 8051)

Timer 2interrupt in 8052

P —

Ve’dor Address from where either the 8-byte ISR executes or a Jump to the programmed ISR starting address takes
placein case EAbitis setas well as specific interruptbitis set

INTO 0x0003 1
Default
To 0x0008 Priorities by
INT1 0x0013 hardware
(Software
T 0x0018 assigned high
Serial 0x0023 priority setting
in IP overrides
T2 0x002B the default)
Syn Serial 0x0053 in few versions

[In-between executing low priority ISR permits the program flow on interrupt to higher priority ISR: YES }

Fig. 2.7 Interrupts in 8051 architecture

Embedded Systems

SI transmission or receiver interrupts and synchronous mode interrupts occur when SI is programmed
using SCON. There are timer T1 and TO overflow interrupts when T1 and TO are programmed using TMOD
and TCON. There are two external pins for interrupts from peripherals or external circuits.

Two external interrupt pins, INTO and INT1 at P3.2 and P3.2 can interrupt provided these pins are
programmed by the TCON lower 4 bits and the IE register bits IE.2 and IE.0.

8051 hardware sets default priorities for service in the case when multiple interrupts occur concurrently.
Priorities by default are in the order INTO, TO overflow, INT1, T1 overflow, SI (UART mode), T2 (in 8052) and
SI (synchronous mode). Using the SFR, called IP (Interrupt Priority) register, at address 0xBS for the byte and at
addresses 0x88 to 0x8C, 0x8D, or 0x8E for the individual bits in the register, an instruction can define that a
given interrupt is of higher (=1) or lower priority (=0) among the various interrupts in 8051. [Section 4.6.3]

Using the SFR IE (Interrupt Enable) register at address 0xA8 for bytes and at addresses 0xA8 to OxAF for
the individual bits, a program enables or disables the interrupts (Section 4.4.3).

TCON.3 shows the status of the interrupt at INT1 and auto resets to 0 when the ISR for servicing INT1
interrupt starts. TCON.1 shows the status of the interrupt at INTO and auto resets to 0 when the ISR for
servicing INTO starts. TCON.2 shows the type of interrupt at INT1 and is 1 if it is of the edge-triggered type,
else 0. TCON.O shows the type of interrupt at INTO and is 1 if it is edge-triggered type, else 0.

8051 has fixed interrupt vector addresses (Section 4.4.1). An 8-byte address space is provided between
two vector addresses. An ISR (Section 4.2) is stored either within these addresses or another ISR is called
from these addresses if the ISR is long.

" 2.2~ REAL WORLD INTERFACING

2.2.1 System Bus-based and 10 Bus-based 10s for Real World Interfacing

Figure 2.8 shows the interconnections for a simple bus structure when interfacing the processor, memory and
IO devices. Three sets of signals — classified as address bus, data bus and control bus defines the system bus.
The characteristics of the processor’s internal bus(es) differ from that of the system’s external bus(es). A
system-bus interfacing-design is created according to the needs of the processor signal’s timing diagram,
speed and the word length for instructions and data.

| ram T|| ROM

[]

1 O S o Address bus

Processor | | [T T 1T — 1 1 = Data bus

Control bus

.,

[

L Input - output ports and devices

Fig. 2.8 Interconnections for a simple bus structure when interfacing the processor,
memory and 10 devices using system bus

805f;and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

Address Bus The processor issues the address of the instruction byte or word to memory system through
the address bus. The processor execution unit, when required, issues the address of data (byte or word) to
memory system through address bus. An address bus of 32 bits fetches instruction or data from an address
specified by a 32-bit number.

E)édmple 2.3

1! 'Let a processor at the start reset the program counter at address 0. Then the processor issues
' address 0 on the bus and the instruction at address 0 is fetched from memory.
2. Leta processor instruction be such that it needs to load register r1 from the memory address
M. The processor issues address M on the address bus and data at address M is fetched.

Data Bus When the processor issues the address of the instruction, it gets back the instruction through the
data bus. When it issues the address of the data, it loads the data through the data bus. When it issues the
address of the data, it stores the data in the memory through data bus. A data bus of 32 bits fetches, loads, or
stores the instruction or data of 32 bits.

E)E&mple 2.4

I When the processor issues address m for an instruction, it fetches the instruction through data bus from

1+ address m. [For a 32-bit instruction, word at data bus is from addresses m, m + 1, m + 2 and
m+ 3.

2. When an instruction is given to store register rl to the memory address M, the processor

#+ issues address M on the bus and sends the data at address M through the data bus. [For

-+ 32-bit data, word at data bus is to the memory addresses M, M + 1, M +2, and M +3.]

Control Bus A control bus issues signals to control the timing of various actions during interconnection.
These signals synchronize the subsystems. There may be the following:

address latch enable [(ALE) Address Strobe (AS) or address valid (ADV)], memory read (RD) or write
(WR) or IO [read (IORD) or write, (IOWR) or data valid (DAV), interrupt acknowledge (INTA) on a request
for drawing the processor’s attention to an event, or hold acknowledge (HLDA) on an external hold request
for permitting use of the system buses, and other control signals as per processor design. Input control signals
may be INTR (Interrupt) when external device Z..crrupts the system and HOLD when external device sends
a hold request for direct memory access (DMA).

Example 2.5

1. When the processor issues the address, it also issues a memory-read control signal and waits for the

¢ data or instruction. A memory unit must place the instruction or data during the interval in which
memory-read signal is active and not inactivated by the processor.

2. When the processor issues the address on the address bus, and (after allowing sufficient time for
the all address bits setup) it places the data on the data bus; it also then issues a memory-write
control signal (after allowing sufficient time for the all data bits setup) to store the bits at

.. memory. The memory unit must write (store) the data during the interval in which memory~

write signal is active and not inactivated by the processor.

Embedded Systems

The buses may have a time division multiplexed (TDM) address and data bits for memories. The interfacing
circuit that demultiplexing the buses uses a control signal. [TDM means that in different time slots, there are
different sets (channel) of signals.] The system has address signals in one time slot and data bus signals in
another. The control signal is called Address Latch Enable (ALE) in 8051. The control signal is Address
Strobe (AS) in 68HC11. It is address valid, (ADV) in 80196. An ALE, AS or ADV demultiplexes the address
and data buses to the devices. '

The buses for program and data memory may be multiplexed. The interfacing circuit for the demultiplexing
of the buses uses a control signal. The control signal is PSEN in 8051 for demultiplexing common address bus
for program and data memory. When the PSEN activates, it signals to read the program memory. When
another control signal RD activates, it signals to read the data memory.

Each chip of the memory or port that connects the processor has a separate chip select input from a decoder.
The decoder is a circuit that has appropriate bits of the address bus at the input and generates corresponding
CS (chip select) control signals for each device (memory and ports) which are at the distinct set of addresses
in the system. Demultiplexer and decoder circuits use higher bits of address bus, PSEN and ALE in 8051.

A circuit called glue-circuit, which includes the decoder for interfacing the system buses between the
processor, memory and IO devices. Interconnections are through data and address and control bus signals.
Understanding timing diagrams of bus signals is essential for appropriate design of the interfacing circuit and
fusing (burning) it in a PLD (programmable logic device), GAL or FPGA. Figures 2.4, and 2.9(a) and (b)
show the circuits interfacing the memory and ports in 8051 and 68HC11, respectively. The 8051 microcontroller
uses an additional signal, PSEN (Program Store Enable), for program codes read from program memory).
[This is because of the use of Harvard architecture (Section 2.4.2) for system memories.]

An interfacing circuit consists of decoders and demultiplexers and is designed according to the available
control signals and timing diagrams of bus signals. This circuit connects all the units, processor, memory and
the IO device through the system buses. It is a part of the glue circuit used in the system and is in GAL
(generic array logic) or FPGA.

Figure 2.8 shows a simple diagram of a typical computer system in which buses provide an interconnecting
network between the processor, memory, and IO systems. In real world interconnections, the network is
formed by buses in the main subsystems.

The system bus interconnects the subsystems, which interconnects the processor with the memory systems
and also connects another set of signals called the 10 bus. Figure 2.10 shows the system and IO buses. It is a
two-level bus architecture. Using an IO bus allows a computer to interface with a wide range of 10 devices,
without having to implement a specific interface for each 10 device. An IO bus can also support a variable
number of devices, allowing users to add devices to a system after it has been hardwired. Devices can be
designed to interface with the bus, allowing them to be compatible with any system that uses the same tybe of
IO bus. The IO bus creates an interface abstraction that follows the processor to interface with a wide range of
IO devices using a very limited set of interface hardware. :

Detailed descriptions of popular IO buses and wireless communication are given in Sections 3.10 to 3.13.
PCI and USB bus (Section 3.12.2) interfaces to devices are designed to meet the PCI standard and USB
(Section 3.10.3) standard.

All that is required is a device driver (Section 4.2.4) in an each operating system—a program that allows
the operating system to control the IO device (Section 8.6.1).

The downside of using an IO bus to interface to IO devices is that all the IO devices in a computer must
share the IO bus, and IO buses are slower than dedicated connections between the processor and an IO device
because the IO buses are designed for maximum compatibility and flexibility.

8051 %.gnd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

68HC11
E Clock for 8 MHz XTAL

‘ T=025ps L

T=025ps
A8..A15

- 0.25 ps- 211

RW t2 _
— R/W =1 b
ADO-AD7 t3 .- AO-A7
D0-D7 .~ DO-D7
(during write) (during read
and write)
(a)
Read . 0x0000
_ F Write
RW .
A81to At15
% AS }
< "ADO,AD1,...AD7 > AOAT,..A7 :
OxFFFF
DO-D7
(b)

Fig. 2.9 (a) Timing of signals from processor when interfacing memory and ports in 68HC11
(b) Circuits for the interfacing memory and ports in 68HC11

An mﬂerfacmg circuit consists of decoders and demultiplexers as well as an 10 bus bridge controller. The
mteﬁhcmg circuit is designed as per available control signals and timing diagrams of bus signals. This
circuit connects all the units, processor, memory, IO bus bridge controller and the IO devices through the
system as well as through the IO buses. IO bus bridge controller may be a part of the glue interfacing
circyit used in the system and is in PLD (programmable logic device), GAL (generic array logic) or FPGA.

Multilevel Buses Figure 2.10 shows a two-level bus architecture. Figure 2.11 shows a three-level bus
architecture.

2.2.2 10 Addresses of Ports and Devices in Real World Interfacing

Memory Address-Mapped 10 Operations Many processors and memory organization require
memory-mapped I0s. IO device and port addresses are interfaced such that these are distinct from the memory

Embedded %jt‘itams

| RAM I [ROM
I] Memory bus

| I
Address bus
| I — 1 O3 I
Processor Data bus l
1 =]
Control bus
_ 1

Input - Output Bus Controller,
for example PCl or USB

I 1
10 bus - 7
evice

R S e o

Fig. 2.10 Memory, system bus and 10 bus interfacing in a two-level bus structure

RAM ROM

Address bus }]
nl 1L | [
Processor Data bus
BR 1 C]
Control bus
]
[|
| Bus Controller PCI or SCSI 7 Bus USB Controller
1 [
} 10 bus ‘] Display
j l I | Controller
ki L
controller :
T— LCI%:rTouch
- reen
_DiskBus e 1 | CD ROM Device] =
Disk-1 [Disk - 2 | [

| usBdevices | [usB Pons’]

Fig. 2.11 Separate memory and I/O buses to communicate with the memory system, and
the 1/0 system using a bus controller and a separate disk 10 bus :

addresses. Memory addresses are for data and software, and IO addresses are for the 10s. The following are
features of memory-mapped I0s:
o The processor has no separate 10 address space for ports and devices. ‘
 The'instructions as well as control signals for the operations on bytes at the memory, IO port and device
addresses are the same.

wsff%nd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

o The processor has no separate input—output and memory load—store instructions.

e The arithmetic, logical and bit manipulation instructions that are available for data in memory are also
available for 10 operations. The processor can directly manipulate the data taken from or stored at the
IO port or device. The manipulation of all instructions in the memory can be done using an accumulator,
any register or any other memory address where the 10 port byte is transferred after, during or before
the arithmetic or logical operation.

Almost all microcontrollers, therefore, have no separate instructions for 10 processing. The 8051
microcontroller (Section 2.1) is an example of a memory-mapped IO-based processor and memory organization.
The 8051, 80196 and 80196 microcontrollers have preassigned device IO addresses for their internal devices
and these addresses are not configurable.

Figure 2.12(a) shows that device addresses are within the RAM and are distinct from memory addresses.
Motorola processors have no separate instructions for IO processing. Consider another system with a 68 HC11
microcontroller.

A configuration is shown in figure. Port A, IO control register PIOC, Port C, B and port control (CTL)
registers have addresses between 0x0000 to 0x0004. On-chip RAM is configured between 0x003F to 0x0040.
[The port addresses and on-chip RAM are configurable by the bits of the configuration register in 68HC11.
For example, the above device addresses can also be re-configured and assigned between 0x0100 and 0x1040.]

10 Addresses Mapped 10 Operations Some processor and memory-organization requires IO address-
mapped IOs operations. Consider a system with an 80x86 processor. Figure 2.12(b) shows the memory addresses
on the left side. It shows the port addresses allocated in IBM PC for timer, keyboard, real time clock and serial
port (called COM2) on the right side. This figure shows that device addresses need not be distinct, they can be
the same as the memory addresses as a control signal will distinguish between them. The following are
features of 10 address-mapped 10s:

1. The processor has a separate IO address space for ports and devices.

2. The instructions and control signals for operations on bytes at the memory and IO ports and devices
are distinct, making the design simple. IO devices and port addresses are interfaced independently of
memory, without considering the memory addresses that are assigned for software and data.

3. The processor has separate input—output (for read and write) instructions and memory load-store (for
read and write) instructions.

4. All the arithmetic, logical and bit instructions that are available in memory are first operated using the
accumulator and then from there bytes are transferred after an arithmetic or logical operation.

The 10 subsystem has input units and output units, also called IO devices. All 10 ports and devices have
addresses. These are assigned to devices according to the system processor and internal hardware configuration.
Direct ALU operations on port byte(s) is not provided.

Th éaddrcsses of device depend on the system hardware configuration. Most processors follow memory-
wped I0s and process the memory and other devices data with the same instructions. Some processors
+ JO-mapped I0s; for example, 80x86 processors process these with a different set of instructions (input—
ut instructions) and control signals.

2.2.3 Device Addresses in Real World Interfacing

During processor instruction, a device when addressed, it gets selected and communicates with system bus or
10 bus using a set of addresses. These addresses are selected either as per decoder circuit design or as per the
device-driver program for a controller for IO bus. The device addresses access during a read or write operation.

Embedded Sysgems

I/O Port and Memory
Addresses in
A 68HC11 Configuration

Devices in a PC
Port A 0x0000 10 Port Addresses
PIOC 0x0040
gor": g Timer
o
Port CTL 0x005F
0x0004 0x0060
. 0x00000... Keyboard
Sonfig — 0X003F to 0X006F
RAM T OXFFFFF...
0x004C System 0x0070
Memory Real Time Clock
o chi OXO0FF 0x007F
v 1 0x03F8
Serial Port 2
OxB5FF Ox03FF

(a) (b)
Fig. 2.12 (a) Processor and memory organization with 1/0 devices memory assignments
in 68HC11 (with memory mapped IO architecture (b) Device Addresses in the
80x86-based IBM PC

1. Device Data Register(s) or RAM buffer(s).

2. Device Control Register(s) to save control and configuration bits.

3. Device Status Register(s) for flag bits as per the device status. A flag may indicate the need for
servicing or show an occurrence of device-interrupt.

Each device, and thus each device register, must be allocated addresses at the memory map.

A very important point to remember is that in most cases, each set of 10 device addresses is often fixed by
the system hardware. A locator or loader cannot reallocate these to any other set of addresses. Also, depending
on the device, at a device address there can be one or several device-registers. ‘

A physical or virtual device can be configured to attach or detach from receiving input and sending output. A
device address can also be just like a file, record address and can be read only or write only or read and write both.

Example 2.6 gives the details of addresses of the registers of an IO device, called serial tine or UART device.

Example 2.6

A serial line device has the addresses assigned for the device registers. The addresses are fixed by hardwiare

configuration of UART port interface circuit in a system employing an 80x86 processor. They are frbm
0x2F8 to 0x2FE at COM]1 in IBM PC. | H

1. (A) Two /O data buffer registers (one for receiving and other for transmitting) are at a commbn

address, 0x2F8, provided a control bit at address 0x2FBH is 0, (i) during read from the address,

the processor accesses from the RBR (Receiver Data Buffer Register) and (ii) during write to 3

the address, it accesses from the TRH (Transmitter Holding Register) at 0x2F8H. (B) Provided

a control bit at address 0x2FB is 1, the data of two bytes of Divisor Latch are at the

addresses, 0x2F8 (LSB) and 0x2F9 (MSB). The divisor latch holds a 16-bit value for 4

805#’§énd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

! dividing the system clock. This then selects the rate of serial transmission of bits at the line. [A bit in
- another register (control register) changes 0x2F8 assignment from 10 register to lower byte at divisor
| latch register and 0x2F9 to higher byte.] '

2\. Three control registers of device are assigned three addresses 0x2FA, 0x2FB and 0x2FC for IER,
.- LCR and MCR. (i) IER (Interrupt Enabling Register) enables device interrupts. (ii) LCR (Line Control
- Register) defines how and how many bits will be on the line. (iii) MCR (Modem Control Register)
. defines how the modem does a handshake for communication.

3. Three status registers of the device are also at three addresses 0x2FA, 0x2FD and 0x2FE as follows:

(i) IR (Interrupt Identification Register) at 0x2FA. It has flags that set on a device-interrupt and

reset at the system reset and at the servicing of the corresponding device-interrupt. (ii) LCR

(Line Control Register) at 0x2FD. It defines how and how many bits will be on the line.

. (iii) MCR (Modem Control Register) at 0x2FE. It defines how a modem does a handshake

and communicates.

Each IO device is at a distinct address or set of addresses. Each device has three sets of registers; data
buffer register(s), control register(s) and status register(s). There can also be one or more device registers
at a device address.

2.2.4 Interrupts and 10s

An IO device functioning is slow compared to that of processor. Therefore, an interrupt-driven 10 is used.
Interrupts are the mechanism used by most processors to handle asynchronous events.

Essentially, the interrupts allow devices to request that the processor stops what it is currently doing and
execute software (called interrupt service routine) to process the device’s request, much like a procedure call,
ISR initiates by an event at external device rather than by a program instruction.

Interrupts are also used when a processor needs to perform an operation on some IO device and also needs
to do other work while waiting for the operation to complete.

E)diuémple 2.7

‘ lf‘ Consider a keyboard example. It takes about 10 ms to send the code for a pressed key and thus a

‘ * ! maximum of 10 keys can be pressed in 1 s. When does a key input event occurs is not fixed. Intervals,
I* between two events of successive key inputs are also not fixed. In IO mode called interrupt driven
" mode, when a key is pressed, an interrupt signal RxRDY (receiver data ready) to a processing unit

. causes the execution of a service routine and the service routine program reads the byte for that code.

* Figure 2.13(a) shows the method of input from and to a port using RxRDY interrupts.

*2." Consider a printer. Assume that a maximum of 300 characters can be printed in 1 s and it thus takes

'“ about 0.3 ms to print the code sent at the output by a port. When a print operation completes for a

| character that is not fixed. Intervals between two events of successive print of the characters are also

) not fixed. In interrupt-driven mode, when a print action completes, an interrupt signal TxDE

. (transmission data empty) to the printer processing-unit (print controller) will cause the execution

"' of a service routine and the service routine will then send another byte as output. Figure 2.13(b)

. shows the method of output from and to a port using the TxDE interrupts.

, Embedded Syqams

At time t, after t, Data b{i
Port - |-
Processor — Keycode
(or Buffer
Microcontrolier) . - Acknowledgement of interrupt (8-bit)
(Strobe request) \
INTA >
At time t; after t
INT |-
X INTO FXRDY Keypad controller
Attime { Receiver Butfer Ready Interrupt

(a
At time 1, after t; Output buffer full (Accept request)

N .

Processor | OBF

(or
Microcontroller) Data byte Attime t, Printer
Buffer
Port >
(8-bit)
INT |-
T~ INT 1 TxDE Printer Controller

At time t,, after t; Transmitted Data Buffer Empty Interrupt
(b)
Fig. 2.13 (a) Method of Input from and to a port using the RXRDY interrupts
(b) Method of Output from and to a port using the TxDE interrupts

2.2.5 Bus Arbitration

There can be several processors as well as several single purpose processors (Section 1.2.1), which share a
bus. A single purpose processor can also be a controller. The controller can be part of a device or peripheral.

Figure 2.14(a) shows how the system buses are shared between the controllers, I0 processor and multiple
controllers for access. Only one of them is granted the bus master status at an instance. In general, there can
be a number of DMA or other controllers or processors trying to get access to a bus at the same time, but
access can be given to only one of these. Therefore only one processor or controller can be the bus master. A
controller is called bus master when it has access to a bus at an instance. Any controller or processor can be
the bus master at the different instances.

Bus arbitration process refers to a process by which the current bus master accesses and then leaves the control
of the bus and passes it to another bus-requesting processor unit. There are three methods, one of which is used
in the bus arbitration process. They are Daisy Chain, Independent Bus Requests and Grant, and Polling methods.

Daisy Chain Method Figure 2.14(b) shows a bus arbitration method called daisy chaining method. It is
a centralized bus arbitration process. Bus control passes from one bus master to the next, then to the next and
so on. Bus control passes from controller units UO to Ul, then to U2, then U3, and so on. Signals in the
arbitration process are as follows: A bus-grant signal (BG) functions like a token, which is first sent to U0. If
U0 does not need the signal the bus, UO transfer it to U1. A controller needing the bus raises a bus-request

Bo&%ind Advanced Processor Architectures, Memory Organization and Real-world Interfacing

(BR) signal. A bus-busy (BUSY) is sent when that controller becomes bus master. When bus master no longer
needs the bus, it deactivates BR and BUSY. Another BG is issued and passed from UO to the controllers one
by one lined up according to their priorities.

Bus controlier Bus Shared
[|
] [[] 1 L
Controller in Controlter in Controller at 10 0
device peripheral port processor
(a
Bus controller)
l T ._,,..--BR } Busy
Data BG £ >
[J
\ Y Y A y
Controlleruo |BG | Controlier U1 BG| Controller U2 BG Controller U3
(b)
BG3
Bus controller BR3 A
¥ L A BR2 A BG2 Busy
Data BRO--
Lis]
BGO™ | y Busy Y °AL-- Ban \ Y
Controller U0 Controllér U Controller U2 Controlier U3
(¢
»>¢ Poll lines
; Bus controller
e - . \
‘ A A Busy
Data BRO \ BR1 \)
l ; . II I
= BR2 .
Y Y 4 Y RENER A \ A BR3
l— Controlier U0 Controller U1 Controller U2 Controlier U3
(d)

Fig. 2.14 (a) System buses shared between the controllers, when 10 processor and multiple
controllers access the bus, and only one of them granted bus master status at any one
instance (b) Bus Arbitration by daisy chaining method (c) Bus Arbitration by independent
bus request method (d) Bus Arbitration by polling bus method

The advantage in this is that at each instance of bus access, the i controller gets highest priority compared to
(i + 1), The controllers and processor priorities for granting bus access (bus master status) are fixed.

Independent Bus Request Method Figure 2.14(c) shows the bus arbitration called independent bus
request method, in which each controller has separate BR signals, BRO, BR1, ..., BRn. Also, there are separate

: Embedded Syatems

BG signals, BGO, BG1, ..., BGn for each controller. An it controller sends BRi (i" bus request signal) and when
it receives BGi (i bus grant signal), it uses the bus and activates BUSY signal. Any controller, which finds an
active BUSY, does not send a BR from it. The advantage here is that the i controller can be programmed to give
the highest priority to the bus and the priority of a controller can be programmed dynamically.

Bus Polling Method Figure 2.14(d) shows the bus arbitration called bus polling method with two poll
lines for four controllers. A poll count value is sent to the controllers and incremented to provide bus access
to the next. Assume there are 8 controllers. Three poll count signals p2, pl, p0, successively change from 000,
001, ..., 110, 111, 000, If on count = i, a BR signal is received, then counts increment stops, and BUSY
activates when that controller becomes the bus master. When BR deactivates then BUSY also deactivate and
count increment starts. The advantage is that the controller next to the current bus master gets the highest
priority to access the bus after the current bus master finishes its operations.

2.2.6 Interfacing Examples with Keyboard, Displays, D/A and A/D Conversions

Keyboard Figure 2.15(a) shows an interface to a keyboard. Two signals from a keyboard controller are
KBINT and TxD. KBINT is interrupt due to RxRDY signal from keyboard controller. TxD is the serial UART
data output of a controller connected to RxD at SI in 8051, or UART Intel 8250, or UART 16550, which
includes a 16-byte buffer.

Bounces create on pressing a key. This is due to a natural spring-like action. Each bounce results in a false
pulse. The keyboard controller has a hardware debouncer to neutralize the false pulse. The keyboard controller
has a counter, which continuously increments at a certain rate and scans each key whether it is in pressed or
released state. It has an encoder to encode the keyboard output for a ROM. The ROM then generates an ASCII
code output for the pressed key. The code also takes into account the meaning of multiple keys when they are
simultaneously pressed. For example, if shift key is also pressed then the code for an upper case character is
generated. The code bits are serially transferred to TxD output, which is received at RxD input of SI.

Display Section 1.3.8 described the LCD, LED and touchscreen displays. Figure 2.15(b) shows an interface
circuit to an LCD display controller. Section 3.3.4 gives details. There are 8 output data and 3 bits for E, RS
and R/W. One 8-bit port is used for output data. Another port is used for 3 bits.

Digital Analog Converter Section 1.3.7 described the DAC (also called D/A). A D/A needs a PWM
circuit, which is an internal device in microcontroller. A pulse width register (PWR) is programmed according
to a required analog output. A counter/timer device generates two internal interrupts: one on timer overflow
and another after an interval proportionally equal to PWR. On the first interrupt the output becomes 1 and on
the second it becomes 0. An external integrator generates the analog output as per the period of output 1
(period between the first and second interrupts) compared to the total period of output pulses (period between
successive first interrupts). Figure 2.15(c) shows an interface to an external D/A. The external D/A is used as
an alternative when PWM is not used.

Analog to Digital Converter Section 1.3.7 described an ADC (also called A/D). An n-bit A/D needs
(i) a start pulse for converting using a short duration single pulse generator circuit, (i) a sample hold amplifier
circuit to hold the signal constant during the conversion period and (iii) positive and negative voltage references
for providing the reference potential difference for conversion of analog input into n-bits. A four or eight channel
A/D is inbuilt in microcontrollers. An external (ADC), for example, ADC0808, can also be used with interfacing
similar to that of the ports. Figure 2.15(d) shows an interface to an external A/D when internal A/D not used.

8051/ and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

(d)

; Data bit Key
E‘ Recz code 4 ROM
! RxD From t, onwards TxD B“"?"
: Processor (8-bit)
o Acknowled fi
Microcontroller) cknowledgement of interrupt
(Strobe request) Scan Debouncer
———— (RxRDY) Attime t; after tg counter, || Keys
decoder
INT [~ 3
- INTO (KBlNT) . TxRDY Keypad controller
At time tg Transmit Buffer Ready Interrupt
(a)
Microcontroller Enable Pulseattimeto
E = A > .
Register select \ Attimet, afterto Display
{ RS >
write/read at 8 data lines Atty ‘ ‘ [
Port |/ A " Font table, CGRAM,
Read/Write Attime t, afterty LCD driver
RW L\ A - LCD Display Controller
(b)
; write at data lines i
Microcontroller At time tg V Ref
A
Port —
Chip se’ef’t Attime t; after to D/A - (a)nPdAMP
< N]
cs o > DAC Filter
ead/Write
Attime t, after ty <—j *
WR A >
(o
Attime tz aftertp, .~ INTO — VRef
INTO ‘ — -
Read from data lines o ath = Multi-
Pot K = Mul- | | channel
Micro- . . channel Analog
controller E Chip select At time ty . ,(QA/gC) ?:pmufsm
[: Start At time ty after ty
Start >
Channel address bits before time ty + * * +
ChAddr -

Fig. 2.15 (a) Interfacing to a keyboard using keyboard gontroller (b) Interfacing to a LCD display
controller (c) Interfacing to D/A (DAC) when internal PWM not used (d) Interfacing to
external A/D (ADC) when internal ADC not used

o Embedded Sy#eyns

“23

INTRODUCTION TO ADVANCED ARCHITECTURES

Figure 2.16 shows an organization of various processor units. The units, which are shown with the dashed
boundary are present in high performance processors. External address, data and control buses interface with
the processor and connect to external memory units, ports and devices.

__

Address
Bus

Internal Bus i

> Q :
R _° i :’

ID S AN 2 . i

! Inst. ;’ ! BT : ! Data I S ‘ i

t Cache! | Cache ! 1 Cache!! PFCU! :

CuU [S SR |________,';‘ ——————— 1 E

I MMU i

---------------- SR T B s ;

Data
Bus

B
. £%
LEJ
3 .
! H E
-
&
BIU 1J

SRS ARS ! FRS !

Control
Bus

0

'
~
t

F4

I (w]
P

A

Fig. 2.16 Organization of various processor units. The units, which are shown with the dashed

The
1.

boundary are present in processors having high-performance advanced architecture

following are the general features present in most processors.

Fixed Instruction Cycle Time: This is the time taken by a processor to execute a simple instruction,
which is ~1 ps for the 8051 processor operating at ~12 MHz, and 0.9 us per MHz clock rate for the
ARMO processor. A system designer uses the instruction cycle time as an indicator to select processor
clock speed as per the application. For example in applications that need fast processing, the ARM9
processor at 100 MHz would be considered suitable; for other applications for which slower processing
will suffice the 8051, 68HC11 or 80196 can be chosen.

- Internal bus width: An ALU gets inputs through the internal buses. Bits in a single operand to ALU

(during a single arithmetic or logical operation) are equal to the bus width. A 32-bit bus will facilitate
the availability of arithmetic operations on 32-bit operands in a single cycle. The 32-bit bus becomes
a necessity for signal processing and control system instructions. When the bus-width is 32 bits, it
reads or writes an integer of 32 bits and will process about four times faster than when the width is 8.
An internal bus of 128 bits is present in SHARC and 64 bits in Pentium.

- Program-counter (PC) bits and reset value: The number of PC bits decides the maximum possible

size of the physical memory that can be accessed by the processor. The reset value tells the designer

8051 kxd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

the initial program addrzss fru.n where the program runs on a system reset or power up. The processor
will start execution from that address. [The initial instruction pointer and code segment register bits
decide the initial program’s memory address in 80x86 processors.]

. Stack-pointer bits and initial reset value: Stack pointer values must point to addresses of the words

stored at the stack. These addresses must be within the ones allocated for stack in the memory. The

software designer defines an initial reset value and sets the beginning stack pointer accordingly.

Table 2.1 lists the structural units in a general-purpose processor. It lists the functions of each.

Table 2.1 General structural units in a processor architecture

N
Structural Unit Functions
MAR Memory address It holds the address of the byte or word to be fetched from external memories.
register Processor issues the address of instruction or data to MAR before it initiates
fetch cycle.
MDR Memory data It holds a byte or word fetched (or to be sent) from (to) an external memory
register or IO address.
System buses Internal Bus It internally connects all the structural units inside the processor. Its width
can be 8, 18, 32, 48 or 64 bits.

Address bus An external bus that carries the address from MAR to memory as well as
to IO devices and other units of system.

Data bus An external bus that carries, during a read or write operation, the bytes
for instruction or data from or to an address. The address is determined
by MAR.

Control bus An external set of signals to carry control signals to processor or memory

or device.

BIU bus interface unit An interface unit between processor’s internal units and external buses.

IR Instruction register It sequentially takes instruction codes (opcode) to execution unit of processor.

ID Instruction decoder It decodes the instruction received at the IR and passes it to processor CU.

CuU Control unit It controls all the bus activities and unit functions needed for processing.

ARS Application (a) A set of on-chip registers used during processing of instructions of an

register set application program or (b) a register window, (c) a subset of registers with
each subset storing static variables of a software-routine or (d) a register
file associated to a unit such as ALU or FLPU.

ALU Arithmetic A unit to execute arithmetic or logical instructions according to the

logical unit current instruction present at IR.

PC Program counter It generates an instruction cycle by sending the address defined by it to
memory through MAR. It auto-increments as the instructions are fetched
regularly and sequentially. It is called instruction pointer in 80x86 processors.

SP Stack pointer A pointer for an address, which corresponds to a stack-top in memory.

Embedded %ﬁems

2.3.1 Architecture of the Advanced Processors

Figure 2.16 shows the additional units in boxes with dashed boundary and these units are present in advanced
processor architectures (high performance processors). Table 2.2 lists the advanced architecture structural
units in a processor organization of general-purpose processor. It lists functions of each unit.

Table 2.2 Structural units in an advanced processor architecture

Structural

Unit

Functions

Instruction level
parallelism units

IQ

PFCU

I-Cache

BT Cache

D-Cache

MMU

SRS

FLPU

MAC

ILP

Instruction queue

Prefetch control unit

Instruction cache

Branch target cache

Data cache

Memory-management
Unit

System register set
Floating point
processing unit
Floating point
register set
Multiply and
accumulate unit

For instruction level parallelism (Section 2.5), the multistage pipeline
processing, multiline superscalar processing, and dual, quad or multicore
processing speeds up the performance from one instruction per clock cycle!.

A queue of instructions so that the IR does not have to wait for the next
instruction after one has been processed.

A unit that controls the fetching of data into the I- and D-caches in advance
from the memory units. The instructions and data are delivered when needed
by the processor’s execution unit(s). The processor does not have to fetch
data just before executing the instruction. Pre-fetching unit improves
performance by fetching instructions and data in advance for processing.
Caches along with a MMU improve performance by giving the instructions
and data fast to the processor execution unit.

It sequentially stores, like an instruction queue, the instructions in FIFO
mode. It lets the processor execute instructions at great speed using PFCU
compare to external system-memories, which are accessed at relatively much

slower speeds.

It facilitates ready availability of the next instruction-set when a branch
instruction like jump, loop, or call is encountered. Its fetch unit foresees a
branching instruction at the I-cache.

It stores the prefetched data from external memory. A data cache generally
holds both the key (address) and value (word) together at a location. It also
stores write-through data when so configured. Write-through data means
data from the execution unit that transfer through the cache to external
memory addresses.

It manages the memories? such that the instructions and data are readily
available for processing.

Itis a set of registers used while processing the instructions of the supervisory
system program.

A unit separate from ALU for floating point processing, which is essential
in processing mathematical functions fast in a microprocessor or DSP.

A register set dedicated for storing floating point numbers ir . standard
format and used by FLPU for its data and stack.

There is also a MAC? units for multiplying coefficients of a series and
accumulating these during computations.

(Contd)

8051 Fﬂd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

Structural Unit Functions
AOU Atomic operation It lets a user (compiler) instruction, when broken into a number of processor
unit instructions called atomic operations, finish before an interrupt of a process

occurs. This prevents problems from arising out of shared data between
various routines and tasks.

1. Instruction cycle time becomes several times less than the processor clock cycle time.

2. The MMU manages the pages in the RAM memory as well as the copies in internal and external caches. Managing has to
be done in such a way that when the instructions exccute, there are minimum number of page and cache faults (misses).

3. MAC units are invariably needed in DSPs. [Section 2.3.5]

Advanced processor circuits consist of RISC architecture. It improves performance by executing most
instructions in a single clock cycle (by hardwired implementation of instructions), by using multiple register-
sets, windows and files and by greatly reducing dependency on the external memory accesses for data due to
the reduced number of addressing modes for arithmetic and logic instructions. An RISC has only a few
addressing modes for arithmetic and logic instructions. It does not have the following addressing modes:
indirect (index), auto-index, and index-relative for ALU instructions. It does not have a second operand
fetched by the immediate addressing mode for arithmetical and logical instructions.

Advanced processor circuits consist of a floating-point unit; FRSs process mathematical functions faster
and with greater precession than when employing an integer-processing ALU.

Advanced processing units include the instruction pipelining unit, which improves performance by
processing instructions in multiple stages. Pipelining allows a processor to overlap the execution of several
instructions so that more instructions can be executed in the same period of time. Section 2.5.1 will describe
multiple stages of instruction execution and will describe how instruction level parallelism (ILP) further
improves processor performance.

Figure 2.17 shows how instructions flow through the pipeline.

In cycle 1, the first instruction I, enters the instruction fetch (IF) stage of the pipeline and stops at the
pipeline latch (buffer) between the instruction fetch and instruction decode (ID) stage. In cycle 2, the second
instruction I, enters the instruction fetch stage, and I} proceeds to the instruction decode stage. In the cycle 3,
I, enters the register (inputs) read (RR) stage, instruction I, is in the instruction decode stage, and instruction
I; enters the instruction fetch stage. In fourth cycle, I, moves to execute stage and in fifth cycle to result write
back stage.

Stage ;
Fetch— 5 lnstr1iinstr2 iinstr3 iinstr4 i Instr5 | Instr6 : Instr7 { Instr 8
Decode i, ilnstr1 ilnstr2 ilinstr3 {Instr4 i lInstr5 :lnstr6 lnstr7
Read Operands i » iinstr1 ilnstr2 ilnstr3 i nstr4 ilnstr5 :lnstré
Execute ; i Instr1 i instr2 iinstr3 iinstrd4 {instr5
Write back : » ilnstr1 ilnstr2 {lInstr3 iinstr4

¥

Successive Clock Intervals

Fig. 2.17 Instruction flow in a pipeline of an advance architecture processor

Instructions proceed through the pipeline at one stage per cycle until they reach the register (result) write-
back (WB) stage, at which point execution of the instruction I, (instr1 in figure) is complete. Thus, in cycle 6

Embedded Systems

in the example, instructions I, through I are in the pipeline, while instruction I, has completed and is no
longer in the pipeline. A 5-stage pipelined processor is still executing instructions at a rate (throughput) of
one instruction per cycle, but the latency of each instruction is now 5 cycles instead of 1. The faster execution
takes place as cycle time now can be one-fifth or less than unpipelined case.

2.3.2 80x86 Architecture

The first four generations of 80x86 are 8086, 80286, 80386 and 80486. The first processor in the 80x86
family of processors is the 16-bit 8086 (1981). The 80x86 has a 32-bit architecture since 80386. Pentium is
the fifth generation architecture (1994) based on the 32-bit 80386. Pentium 4 is of seventh generation and
Xeon and Core? are eighth generation architectures. Core2 means dual core architecture. The 80x86 architecture
processors have become popular since their application in the IBM PC (personal computer). Itanium is based
on 64-bit architecture, which simulates the 80x86 architecture.

The features of 80x86 architecture are as follows:

1. The original 8086 architecture consists of general purpose registers AX, BX, CX and DX. Each can be
considred as two 8-bit registers. For example AX as AL (A lower byte) and AH (A upper byte). A
32-bit extension has EAX, EBX, ECX and EDX. EAX registers. Each can be considred as two 16-bit
registers. AX then has a lower 16-bit EAX. Figure 2.18 shows the 80x86 architecture registers.

2. The 8086 architecture provides for code, data, stack and stack segmentations. The original 8086
architecture consists of four segment registers CS, DS, SS and ES to enable access to memory assigned
to different segments.

3. IPis an instruction pointer, of a 16-bit address, and CS contains a 16-bit program code segment address
for 16 upper bits of address.

4. SI contains index of source operand and DI contains 16-bit index of destination. BP is memory offset
pointer of 16 bits address and DS contains a 16-bit data memory segment address upper bits.

5. 16-bit or 32-bit or 64-bit words store as little endian. Data need not be aligned at the addresses in
multiples of 2 or 4 and can start from any address.

16 bits registers 16-, 32 - or 64-bit registers 8-, 16-, 32- or 6-bit
CS, DS, SS, ES, FS and GS] IP Instruction (code) pointer ?: s;ztr::spurpose
Sl Source index pointer
DI Destination index pointer | ABCandD |
SP Stack pointer
o Base potr

Fig. 2.18 80x86 architecture registers

6. The 80x86 mainly uses two address arithmetic and logic instructions. This means that the accumulator
is not the only register to accumulate ALU result, which in turn means that a register operand (AX or
BX or CX or DX) can be a destination as well as the first source operand.

7. A memory address can be the first or second operand, a characteristic of CISC addressing modes for
ALU instructions.

8. The present generation 80x86 architecture decodes a CISC instruction and creats microoperations that
implement on a microarchitecture of RISC. ;

9. The small number of general registers (also inherited from 8085) has made register-relative addressing
(using small immediate offsets) an important method of accessing operands, especially on the stack.

8051§§nd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

10. The 80x86 has IO mapped 10. An IO address is of 16 bits for an IO byte. Processors of the Intel 8086
family process and access IO units and IO devices by the separate IN and OUT instructions. The 10
mapped IO processors have a separate set of addresses for accessing inputs and outputs. It simplifies
the IO units interfacing circuit that connects to the processor.

11. The 8086 supports 256 interrupt levels for the hardware as well as software and supports nested
interrupts. This means that an ISR can be interrupted and a higher priority ISR can execute in between.

12. The new generation 8086 architecture supports a mode called real mode. Real mode supports direct
access without segmentation to peripheral devices and basic input output subroutines (BIOS). Real
mode supports 20-bit segmentation instead of 16-bit. The segment register has only the upper 16 bits.
The lower bits are Os.

13. A mode called 32-bit protected mode is also provided and supports pages in memory.

14. 8086 supports many OSs, including Windows and multitasking operating systems.

15. The latest 80x86 architectures support thread handling, integer SIMD and SIMD extension instruction
sets.

Program routines and processes can have different segments. For example, a program code can be segmented
and each segment stored at a different memory block. A pointer address points to the start of the memory
block storing a segment and an offset value is used to retrieve a memory address within that segment. The data
can also be segmented with each segment at different blocks. Similarly, strings can be segmented.

The 80x86 architecture is a widely used architecture. The data are not aligned and save as little endian. It
has general purpose pointers and segment registers and supports memory segmentation and paging. There
can be different segments at the memory for different functions and processes (tasks). These can comprise
different segments for data and different segments for the stacks.

2.3.3 ARM

Detailed information on ARM is at http://www.arm.com. A brief description of ARM architecture and features
that makes it important for embedded systems, such as digital and video cameras and mobile phones, is give here.
Figure 2.19 shows ARMT7 registers and a three stage pipeline architecture. ARM has registers RO to R15.
R15 also functions as a program counter. R14 functions as a link register. It has CPSR (current program status
register) and SPSR (saved program status register).
The main features of ARM are as follows:

1. It has 32-bit architecture but also supports 16-bit or 8-bit data types. It supports 16-bit instructions
also in Thumb® mode. It supports Jazelle Java execution accelerator.

2. ARM is programmable as little endian or big endian data.

3. ARM provides the advantage of using a ZioC in terms of functionality, along with the advantage of an
RISC in terms of faster program implementation as well as reduced code lengths. It implements faster
because the register word instantly availability to execution-unit. Code lengths are reduced because
most instructions use registers as operands. Few bits in the instruction specify a register as operand. 8, 16
or 24 bits specify a memory address as operand and the displacement bits in the instruction.

4. ARMT7 and ARM9 microprocessors have a combination of RISC and CISC features. ARM supports a
complex addressing modes-based instruction set. ARM processor has an RISC core for processing.

* There is an in-built compilation unit. It first compiles the CISC instructions into RISC formats, which
are then implemented by the RISC core of the processor. Internally, the implementation for many
instructions is like in a RISC (without the micro-programmed unit).

5. ARM7 has Princeton memory architecture; ARM9 has Harvard architecture. [Section 2.4.2]

Embedded Systems

10.

11.

32-bit bus

11 1 1
“ Execution unit
1D
ro
to
ris !

Hardwired circuits for each instruction

32-bit r15 functions as PC, r14 as link register

| cPsR]

]

| sPsR |
Latch Latch
Fetched an Decode I and read inputs It adress omd
instruction I, operands Write Result I, !
One clock Cycle C; . One clock Cycle C;, 4 - One clock Cycle Cj,» i

Fig. 2.19 ARM?7 registers and three stage pipeline architecture

ARM debug and trace tools quickly debug real-time software, and trace instruction execution and
associated program data at full core speed.

- A wide choice of development tools and of simulation models for leading EDA (Electronic Design

Automation) environments and excellent debug support for SoC design are available.

ARM codes are forward compatible with higher versions. For example, ARM7 codes are forward
compatible with ARM9, ARM9E and ARM10 processors as well as with Intel XScale micro-
architecture. ARMIE and ARM 10 families use a Vector Floating Point (VFP) ARM COprocessor,
which adds full floating point operands. VFP also provides fast development in SoC design when
using tools like MatLab®. Applications are in image processing (scaling), 2D and 3D transformations,
font generation and digital filters.

ARM permits programming by an additional instruction set designed for 16-bit operations. Thumb is
an industry standard instruction set, which enables 32-bit performance at the 8/16-bit system cost in
terms of memory needs. This provides typical memory savings of up to 35%, over the equivalent 32-bit
code, while retaining all the benefits of a 32-bit system (such as access to a full 32-bit address space).
There are no overheads (in terms of time and memory) in moving between Thumb and the normal
ARM state of the codes. The two states are compatible on a normal basis. This gives the code designer
complete control over performance and code-size optimization.

ARM uses an Intelligent Energy Manager (IEM) technology. It implements advanced algorithms to
optimally balance processor workload and energy consumption. It maximizes system responsiveness.
IEM works with the operating system and mobile OS. An application running on a mobile phone
dynamically adjusts the required CPU performance level.

ARM processors use the AHB (AMBA Advanced High Performance Bus) interface. AMBA is an
established open source specification for on-chip interconnects. [Section 3.12.3] AMBA serves as a
framework for SoC designs and development of IP cores. It provides a high-performance and fully

8051 ;and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

_synchronous back plane. (Back plane has additional set of controllers, which can access each other through
another comon bs, which is distinct from system bus. The multilayer AHB in version ARM926EJ-S and
all members of the ARM 10 family represent a significant advancement. They reduce accesslatencies and
increase the access-andwidth in a multimaster (multiple controllers accessing the bus as master) system.

Instruction Set — ARM7 Processors have the following type of instruction sets. The ARM7 in version
with suffice T has instruction set called Thumb® intruction set support.

1. Data Transfer Instructions Given below are the instructions for transfer between register-
memories. The memory address is as per a register used in index or index-relative or post auto-index
addressing mode.

(a) load in register a word (LDR)

(b) store from register a word (STR)

(c) set a memory address in a register (ADR). Addrss is of 12 bits. [Alternative for 16 bits address
setting in a register is using any register or r15 in an arithmetic operation.]

(d) load in register a byte (LDRB)

(e) store from register a bute (STRB)

(f) store from register a half word (STRH) [A word in ARM is of 32 bits.]

(g) load in register a half word as such or signed half word (LDRH or LDRSH).

The following are the instructions for a word transfer between registers:

(a) Move (MOV)

(b) Move reverse (MVR)

A load or move or store instruction can be conditionally implemented. For example, MOVLT r3, #10. The
immediate operand 10 will transfer to r3 provided a previous instruction for comparison showed the first
source as less than the second. Conditions are LT (signed number less than), GT (signed number greater than),
LE (signed number less or equal), EQ (equal), NE (not equal), VS (overflow), VC (no overflow), GE (signed
number greater than or equal), HI (unsigned number higher), LS (unsigned number lower), PL (plus, nor
Negative), MI (minus), CC (carry bit reset), and CS (carry bit set).

2. Bit Transfer or Manipulation Instructions
(a) Register-bits Logical Left Shift (LSL)

(b) Register-bits Logical Left Arithmetic Shift (ASL)

(c) Register-bits Logical Right Shift (LSR)

(d) Register-bits Logical Right arithmetic Shift (ASR)

(e) Register-bits Rotate Right (ROR)

(f) Register-bits Rotate Right with carry also extended for rotating (RRX).

3. Arithmetical and Logical Instructions The following are the instructions for arithmetical
operations. Each uses three operands from the registers. One source may, however, be immediate
operand addressing in addition and subtraction.

(a) Add without carry two words and put result at the third operand (ADD)

(b) Add with carry two words and put result at the third operand (ADC)

(c) Subtract without carry two words and put result at the third operand (SUB) [Carry bit used as
borrow.]

(d) Subtract with carry two words and put the result is at the third operand (SBC)

(e) Subtract reverse (second source with the first) without carry two words and put result is at the
third operand (RSB) [Carry bit used as borrow.]

(f) Subtract reverse with carry two words and the result is in the third operand (RSC)

(g) Multiply two different registers and put result is at the destined register (MUL)

- ' ' o Embedded Systems

(h) Multiply two source registers and add the result with the third source register and accumulate the
new result in a destined register (MLA) [There are four operand registers.]

The following are the instructions for logical operations:

(a) Bit wise OR two words and put result at the third operand (ORR)

(b) Bit wise AND two words and put resulit at the third operand {AND)

(c) Bit wise Exclusive OR two words and put result at the third operand (EOR)

(d) Clear a Bit (BIC). [There is one source for the bits; a second source for the mask and the result is
put at the third operand.]

An arithmetical or logical instruction can be conditionally implemented. For example, SUBGE rl, 13, 5.
The operand from r3 is subtracted from r5 if the GE condition resulted in earlier operation for test or comparison.

The following are the instructions for compare and test operations. The result destines to CPSR, which
stores four condition bits, N, V, C, and Z.

(a)
(b)
(©
d

4.

Bit-wise Test two words (TST)

Bit-wise negated test between two words (TEQ)

Compare two words and put result at the CPSR condition bits (CMP)

Compare two negative words and put result at the CPSR condition bits (CMN)

Program-Flow Control Instructions The following are the instructions for branching operations.
A branching instruction can be conditionally implemented. Branch to an address relative to PC word
inrl5 (B). ‘B #1A8’ means add 0x1A8 in PC and change the program flow. ‘BGE #100° means that if
a GE conditiori~resu]t¢d on a previous compare or test, then add 1A8 in the PC. There are similar
instructions for (s\:lifferﬁggaconditions of the processor status flags (at CPSR). [PC is r15.]

Example 2.8

This example gives an assembly language program example for the ARM.

Consider the problem of additing three numbers, X, y and z (= 127, 29 and 40) and storing the result at
a memory address, M for a [a =x + y + z.] Using the instructions of the above instruction-set, the assembly
language codes will be as follows.

1. BEGIN: MOV r2, #0x007F ; Transfer 127 into processor register r2.

Qe W

oo

MOV r3, #0x001D ; Transfer 29 into processor register r3.

MOV r4, #0x0028 ; Transfer 40 into processor register r4.

MOV rl, #0x000 ; Transfer O into processor register rl.

ADD rl, rl, r4 ; Add the register r4 word into the rl.

ADC rl, rl, r3 ; Addtheregisterr3 word along with the carry (if any) from previous
addition into the rl.

ADC rl, rl, r2 : Add the register r2 word along with the carry (if any) from
previous addition into the rl.

ADR r5, 0x800 ; Set the address into r5. Memory address M set 0x800.

STR [r5], rl ; Store the rl at the address pointed by rS5.

Table 2.3 gives features and comparison of the exemplary high performance ARM family of processors.
1. ARM9™ Thumb® family supports Windows CE, Palm OS, Symbian OS, Linux and other OS/RTOS.

There is Palm OS support in ARM920T and ARM922T processors. ARM 940T has a memory Protection
Unit (MPU) and a support to a range of Real-Time Operating Systems including VxWorks.

8051% and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

2. ARM7 and ARM9 integrates instruction and data caches.

3. ARM architecture refers specifically to the architectural

4.

instruction sets and programmers models,

such as ARMVSTE, ARMV5TEJ and ARMYV6 architecture in ARMI1.

ARMVAT (version 4 Thumb) microarchitecture is com
* families. The term ARM microarchitecture refers speci
such as the ARM9™ family of cores and the ARMI10 family of
core and the ARM1020E™ core are CPU products based

mon to ARM7, ARM9, ARM 10 and ARM 11
fically to the implementation of architectures
cores. For example, ARM926EJ-S™
on those earlier microarchitectures. An

enhancement of v4T architecture is ARMVSTE architecture (introduced in 1999). It has ARM DSP
instruction set extensions that improves the speed of instruction set by up to 70% for audio DSP
applications. [Certain applications need microcontroller data processing features as well as DSP features
in a single processor in place of the multiprocessor system.]

Table 2.3 Comparative features of ARM versions

example, Personal audio
MP3, WMA, AAC players,
entry level mobile phone, two
way pagers, still digital
camera, PDAs

Feature ARM7™ Thumb® Family ARMY™ Thumb® Family ARMII
Family (a) ARM7TDMI® (Integer (a) ARM920T (Dual 16 k Families with ARMv6 instruction
members Core) (b) ARMTTDMI-S™, caches with MMU support, set architecture that include the
Example (Synthesizable version of OSes). (b) ARM922T Thumb® extensions for code
ARM7TDMI) (c) ARM7EJ- (Dual 8k caches for density, Jazelle™ technology for
S™ (Synthesizable core with applications, support for multiple Java™ acceleration, ARM DSP
DSP and Jazelle technology) OSes). (¢) ARM940T™ (Dual extensions and SIMD media
and ARM720T™ (cached 4 k caches for embedded control processing extensions. MMU
processor macrocell, 8K applications running an RTOS) support, OSes and Paim OS
Cached Core with Memory
Management Unit (MMU)
supporting operating systems
(OSes) Windows CE, Palm
08, Symbian OS and Linux)
Core with 32-bit RISC core 32-bit RISC processor core super 32-bit RISC processor core with
ARM® and scaling 5-stage integer pipeline. 8-stage integer pipeline, static and
Thumb® 8-entry write buffers. It avoids dynamic branch prediction, and
instruction blocking the processor on separate load-store and arithmetic
sets external memory writes pipelines to maximize the
instruction throughput
Application Cost and power-sensitive Set-top boxes, home gateways, Battery-powered and high-density
domain consumer applications for games consoles, MP3 audio, embedded applications. Embedded

MPEG#4 video videophones,
portable communicators, PDAs,
next-generation hand-held
products, digital consumer
products, imaging products,
desktop printers, still picture
cameras, digital video cameras,
automotive telemetric and
infotainment systems

SoCs of latest generation of
wireless and consumer
applications. Addresses the
requirements of embedded
application processors, advanced
OSes and multimedia, such as
audio and video CODECs.
Consumer devices include 2.5G
and 3G mobile phone handsets,
PDAs and multimedia wireless

(Contd)

Embedded Systems
Feature ARM7™ Thumb® Family ARM9™ Thumb® Family ARM11
devices, home consumer .
applications such as imaging
and digital camera applications,
home gateway and network :
infrastructure equipment ,
including voice over IP and- |
broadband modem
Perform- 130 MIPS using Dhrystone Achieves 1.1 MIPS/MHz, Targets a performance range of
ance 2.1 benchmark in typical 300 MIPS (Dhrystone 2.1)ina Dhrystone 400 to 1200 MIPS'
0.13 pm process typical 0.13 um process :
Code High code density High code density High code density L
Density (comparable to a 16-bit <
microcontroller) +
i3
Die size on Small die size portable Die Size 4.2 mm? in ARM940T. 0.13 um foundry processes deliver
silicon t0 0.25 pm, 0.18 pm and Portable to latest 0.18 um, 350 to 500+ MHz in worst ei#e
0.13 um versions 0.15 pm, 0.13 pum silicon and over 1 GHz on next- ¥4
processes. Frequency 185 MHz generation 0.1pm processes * |
at 0.18 pin ARM 940T. 5
Memory No tight coupling No tight coupling
Coupling i
(Section 6.3) :
Power Very low power consumption ~ Very low power consumption. Optimum power efficiency, sixixgle—
Perform- 940 T power 0.8 WW/MHz on issue operation with out-of-order
ance e 0.18 p silicon foundry generic completion to minimize gate’ ‘
: process. Worst case: 1.62 V, count, consuming less than - |
125°C, and slow silicon. Typical: 0.4 yW/MHz on 0.13 um foundry
1.8 V, 25°C, nominal silicon processes ﬂ
Bus AHB Single 32-bit AMBA bus None il
Interface interface) j

5. Anenhancement of v5TE architecture is ARMVSTE] architecture (introduced in 2000). It incorporates
Jazelle Java execution accelerator technology for Java. This provides significantly higher Java codes
execution by 8x performance than a software-based Java-Virtual-Machine (JVM). There is an 80%
reduction in power consumption compared to non Java-accelerated core. This functionality gives
platform developers a feature that the Java codes as well as OS applications can run on a single
processor in an SoC or embedded system.

6. An enhancement of vSTEJ architecture is with ARMv6 architecture (first implementation 2002), used
in ARMI1 microarchitecture. It has SIMD (Single instruction multiple data) extensions, optimized
for applications including video and audio CODECs. SIMD execution performance is enhanced

by 4x.

Exemplary Other High Performance Processors Intel XScale and StrongARM SA-110, T OMAP
and MIPS R5000 are other examples of high performance 32 and 32/64-bit processors. These have also been
used in many applications in embedded systems. '

8051 Aad Advanced Processor Architectures, Memory Organization and Real-world Interfacing

Some processors are specially dedicated to a particular performance. For example, X10 family network
processor delivers 10 Gbps port performance for IPv6 (broadband Internet). DSPs with high performances
are SHARC, Tiger SHARC and TMS 64x described in following subsections.

2.3.4 SHARC

SHARC is processor architecture from Analog Devices. SHARC stands for super Harvard architecture single
chip computer. Figure 2.19 shows the buses, ALUs, registers and memory in SHARC architecture.

SHARC is used in a large number of DSP applications. It has controlled power dissipation in floating point
ALU. Different SHARCs can be linked by serial communication between them.

SHARC has following features:

1.

2.
3.

®©

SHARC has 32-bit address space for accessing 16 GB or 20 GB or 24 GB as per the word size configuration
in the memory. For 32-bit word size external memory configuration, addressable space is 16 GB.
SHARC provides for two word size configurations—32-bit and 48-bit.

SHARC has two full sets of 16 general-purpose registers. Therefore, context switching is fast. It thus
enables multitasking OS and multithreading in programs easily.

Registers are called RO to R15 or FO o F15 depneding upon whether there are used for integer operation
configuration or floating point configuration.

The main registers are of 32-bit. A few registers are of 48 bits so that they may also be accessed as a
pair of 16-bit and 32-bit registers.

SHARC provides for a large ON chip memory of 1 MB. It has program memory and data memory
Harvard architecture in ON chip memory.

SHARC also provides for external OFF chip memory.

OFF chip as well as ON-chip memory can be configured for 32-bit or 48-bit words.

SHARC architecture allows program memory configurable for program memory and data memory
sections.

48 bits Instruction 32 integer and floating point (FP)
| : | J-ALU for Integers |
40-bit extended floating point (EFP) 40-bit (EFP) t K-ALU for Intogers |
|~ 80 bits

1 MB On-chip memory J

| 32-bit address bus J-bus [
| 32-bit address bus K-bus]
| 128-bit data bus J-bus j Jeae
| 128-bitaddress bus K-bus | Memory
l 32-bit address bus i-bus l |
| B 32-bit world

128-bit data bus I-bus

Fig. 2.20 Buses, ALUs, registers and memory in SHARC architecture

: Embedded Systems

10. SHARC has instruction word of 48 bits and 32-bit data word for integer and floating point operations
and 40-bit extended floating point. SHARC functions as a VLIW (very large instruction word) processor.
The word size is 48-bit for instructions, 32-bit for integers and standard floating-point (FP), and 40-bit
for extended floating-point (EFP). Smaller 16 or 8-bit must also store as full 32-bit data. Therefore,
the big endian or little endian data alignment is not considered during processing

11. SHARC also provides instructions for saturation integer operations. For example, the integer after
operation should limit to a maximum value. These instructions are required in graphic processing.

12. SHARC permits parallel operations. It supports processing instruction level parallelism as well as
memory access parallelism. Therefore. there can be multiple data accesses in a single instruction.

TigerSHARC TigerSHARC is a highest performance density family of processors from Analog Devices.
The architecture provides precision high-performance integrated circuits used in analog and digital signal
processing applications. A version of TigerSHARC is TigerSHARC ADSP-TS201.

TigerSHARC is designed for multiprocessing applications and for peak performance greater than BFLOPS
(billion floating-point operations per second). MultipleTigerSHARCs can connect by serial communication at
-1 GBps. ADSP-TS203SABP-050 processor processes using 250 MHz clock and on chip memory of 6 M bits
and operates at 1.2 V/3.3 V. Low voltage design helps in processing with little power dissipation. Analog Devices
TigerSHARCs have the highest performance per watt. A TigerSHARC version has 24 M bits ON-chip memory.
TigerSHARC is available as the IP core also so that new applications with the core can be developed. :

TigerSHARC finds applications in software baseband processing, 3G WCDMA baseband communication,
cellular base stations and 14 Mbps HSDPA (High Speed Data Packets Access) networks for packet-based-
multimedia contents. ‘

2.3.5 DSP

Advanced signal processor circuits consisting of MAC (Multiply and Accumulate) unit at a DSP provides fast
multiplication of two operands and accumulates results at a single address. It computes fast an expression such
as the following, y, = Z (a,.x,,;), where the sum is made fori=(, 1,2, ...,N-1. Here i, n and N are the integers, a
is a coefficient, x is independent variable or an input element and y is the dependent variable or an output element.

DSP processors invariably have Harvard architecture. Caches are also organized in Harvard architecture

(separate I-cache and D-Cache).

Architecture of Digital Signal Processor The architecture of a DSP can be understood by considering
an exemplary DSP of TMSC64x™ DSP generation.

The main structural units in a TMSC64x™ DSP generation and their functions are given in Table 2.4.
Figure 2.21 shows the interconnections between twenty-five structural units by a block diagram for processor
structure. Table 2.5 gives the additional structural units and the functions in the processors, TMS320C64x64 ™
VelociTI™, which is a VLIW architecture Extension. '

™ 2.4. T PROCESSOR AND MEMORY ORGANIZATION
2.4.1 'Pr_oCessor Organization

Figure 2.22 shows a simple representation of organization of processor and memory in a system. The memory
and 10 devices interface the processor using buses. Figure 2.16 showed a detailed block diagram for internal

8051 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

Table 2.4 Structural units and functions of processor in a DSP core

Structural Units in Core

Functions

Basic units

In;#uchbn dispatch
Control register
Registers emulation unit
Register File A

Register File B

Prefetch unit
Processing unit

Arithmetic logical
subunit

Auxiliary Logic subunit

Multiplier subunit

Floating Point
processing (FLP) subunit

Assembly Optimizer

C compiler

MDR, internal bus, data bus, address bus, control bus, bus interface unit, instruction fetch
register, instruction decoder, contro! unit, instruction cache, data cache, multistage pipeline
processing, multiline. superscalar processing for processing speed higher than one
instruction per clock cycle, program counter similar to Table 2.2.

For dispatch of instructions to the appropriate units.
Control registers associated with the control unit of the processor.
Emulation

Set of on-chip registers used dunng processing instructions in data path 1. These are
named AO... A'15 and A16 ...A31. A register file is a file that associates with a unit such
as ALU or FLPU.

Set of on-chip regi’stérs used during processing instructions in data path 2. These are
named AQ... A 15 and A16 ...A31. '

For fétching eight 32-bit instructions at each cycle.

" Two multipliers and six arithmetical units, highly onhbgonal, compiler and assembly
. optimizer, execution resources.

Subunit to execute arithmetical or Ioglcal instruction according to current mstructlon
fetched at IR.

A subunit used during subtraction. ,_[Finds 2’s complement before addition and then adds
in order to subtract]

Multiply
Subunit in C67x ™ drstmct from the ALU and performs FLP operations.

Optimizer for zissembled codes
Highly efficient compilation-

Table 2.5 Additional structural units and functions of processors in TMS320C64x6

4TM

VelociTl ™ VLIW architecture extension

Structural Unit in Core

'F unctions

Packed data processing

Parallel execution MAC units

Special insfru(_:tions
Lével 2 cache
Instruction packing unit.

8- blt or 16-bit data packed and processed as 32-bit data
Quad 16-bit MACIOctal 8-bit MAC [Table 2.2] : '
iBroadband and i 1mage processmg using VLIWs

B .Enhances performanoe of each fetch cycle _

: 'Instructmns packed as VLIV, which executes in parallel w1thout m between
halts . : .

umts of processor and showed the buses. A processor has an ALU A processor circuit does sequential operations
and a clock guides these. A processor has the program counter and stack pointer, which point to the instruction
to be fetched and top of the data pushed into the stack, respectively. Certain processors have on- -chip memory

' | Embedded Systéms

L“) . Internal Bus
Instruction Emulation Test Unit
Fetch Unit
Unit
i - Interrupt
S'sst‘;:g'r?" Control Control
Unit Registers Unit
Instruction Control
2-Level Logic
Decoder g
Unit Caches
Bus
Interface
(W Unit
[|
Register File Register File
A15--- AD B15--- BO L1:ALU o kAl
A31--- A15 B31 Bi6 Sl: Auxiliary Logic Unit S2 : Auxiliary
M1: Multiplier Unit M2: Multiplier
D2 |M2| | S2 D1 :Divider Unit D2 :Divider Unit
ILP:
Eight 32-bit
Instructions

Four 16-bit MACs/Eight
8-bit MACs Serialism

Fig. 2.21 Core and special structure units in DSP, TMS320C64x DSP
Note: Floating Point Units present in C67x

| RAM_] [ROM]
L] I _.-Address bus
l 1
... Data bus
Processor -
.- Control bus
m
L Input~Output Devices |

Fig. 2.22 A simple view of organization of processor, buses and memory in a system

management unit (MMU). A processor generally has general-purpose registers. Registers organize onto a
common internal bus of the processor. A register is of 32, 16 or 8 bits depending on whether the ALU
performs at an instance 32- or 16- or 8-bit operation. ‘

A processor may have CISC (Complex Instruction Set Computer) or RISC (Reduced Instruction Set
Computer) architecture. A CISC has the ability to process complex arithmetic and logic as well as other

8051 féhd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

instructions and processes complex data sets using fewer registers, as it provides for a large numbe, or addressing
modes. An RISC executes simpler instructions and in a single cycle per instruction. New RISC processors,
such as ARM 7 and ARMSY, also provide for a few most useful CISC instructions also. CISC converges to an
RISC implementation because most instructions are hardwired and implement in a single clock cycle.

A processor provides for the inputs for external interrupts so that the external circuits can send the interrupt
signals (Section 2.2.4). The processor may possess an internal interrupt controller (handler) to program service
routine priorities and to allocate vector addresses. The internal interrupt controller is of great help in most
applications.

A processor may provide for bit manipulation instructions. These instructions help in easy manipulation of
bits at the ports and memory addresses. Certain processors possess FLPU and FRS units that perform floating-
point operations fast. These permit higher computational capabilities in the processor; they are essential for
signal processing and sophisticated control applications.

Certain processors provide for direct memory access (DMA) controller with multiple channels on chip.
When there are a number of /O devices and an I/O device needs to access a multibyte data set fast, the system
memory on-chip DMA controller is of great help. Section 4.8 will describe the DMA in detail.

Table 2.6 lists the nineteen features for the CISC family of microcontrollers and microprocessors.

Table 2.6 Features in four CISC microcontroller and processor families

R —
Capability Intel 8051 Motorola Intel Intel
and Intel M68HCIIE2 80196KC Pentium
8751 E2
Processor instruction cycle in 1 0.5 0.5 0.001!
microseconds (typical)
Iinternal bus width in bits 8 8 16 64
CISC or RISC architecture CISC CISC CISC CISC with RISC feature?
Program counter bits with 16 16 16 323
reset value (0x0000) [(OXFFFE)] (0x2080) (OXxFFFF FFFF)
Stack pointer bits with initial reset 8 16 16 323
value in case a processor defines these 0x07)
Atomic operations unit No No No No
Pipeline and super-scalar architecture No No No Yes
On-chip RAM and/or register 128 and 128 512 256 and No
file bytes* RAM RAM 232
Instruction cache No No No 8 kB
Data cache No No No 8 kB?
Program memory EPROM/EEPROM 4k 8k 8k No
Program memory capacity in bytes 64 k8) 64 k 64k 4GB
Data/ stack memory capacity in bytes 64 k8 64 k 64k 4GB
Main memory, Harvard or Princeton Harvard® Princeton Princeton Princeton
architecture (Section 2.4.2)
External interrupts 2 2 2 17
Bit manipulation instructions Yes Yes Yes Yes
Floating point processor No No No Yes

(Contd)

Embedded Systems

Capability Intel 8051 Motorola Intel Intel
and Intel MG68HCIIE2 80196KC Pentium
8751 E2
Internal Interrupt controller Yes Yes . Yes No
DMA controller channels No No 1 (PTS)? 4
On-Chip MMU No No No Yes

'1t is maximum time in a typical Pentium 1 GHz version.

2Single clock-cycle hardwired implementation for most instructions implement like a RISC

3Stack Pointer ESP 32 bits together with the Stack Segment ES 16 bits point to physical stack address at the memory. It equals
ES x 0x10000 + ESP.

4This is in standard version. In other versios, it may be different.

3This is in a typical version

Program and data memory spaces are separate in Intel 8051 family members. It is common in others.

7Using the INTR pin and external programmable interrupt controller, up to 256 external interrupts can be handled

8PTS means there is a Peripheral Transactions Server providing a DMA-like feature.

Table 2.6 shows the memory addresses in hexadecimal. Thus 0x10000 means a hexadecimal memory
address 10000; Ox100FF means hexadecimal memory address 100FF. The same is the convention in C. It
helps in distinguishing a decimal number from hexadecimal number.

2.4.2 Memory Organization
" The memory.system (consisting of various units) acts as a storage receptacle for data and programs. Most

systems have two types of memory—read-only memory (ROM) and random-access memory (RAM). A flash
memory functions as the ROM. Examples of uses of flash are mobile phone, mobile-computer and digital camera.

Read Only Memory As its name suggests, contents of the ROM does not modify during running of
computer or on power off but may be read. In general, the ROM is used to hold a program that is executed
automatically by the system évery time it is turned on or reset. This program is called bootstrap, or boot
loader, which instructs the system to load its operating system from its hard disk or other /O storage device.
The name of this program comes from the idea that the system is “pulling itself up by its own bootstraps” by
executing a program that tells it how to load its operating system. An example of ROM is as follows: A system
has ROM unit(s) for the bootstrap program(s), basic input—output system (BIOS) program(s) and vector
addresses of the interrupts (Section 4.4.1). ‘

Random Access Memory Random-access memory, on the other hand, can be both read and written,
and is used to hold the programs, operating system and data required by the system. For example, a mobile
phone has 128 kB or 256 kB of RAM to hold the stack and temporary variables of the programs operating
system and data. RAM is generally volatile, meaning that it does not retain the data stored in it when the
system’s power is turned off. Any data that needs to be stored while the system power is off must be written
to a permanent storage device, such as flash memory or hard disk.

Addresses Memory (both RAM and ROM) is divided into a set of storage locations, eac.i of which can
hold 1-byte (8 bits) of data. The storage locations are numbered, and an assigned number is called address. It
defines in a memory of system which location the processor wants to reference at a given instance. One of the
important characteristics of a computer system is the width of the address lines (bus) it uses, which limits the
amount of memory that the processor can address. Most current computers use either 32-bit or 64-bit addresses,

80%# and Advanced Processor Architectures Memory Organization and Real-worla Interfacing

allowing them to access either 23 or 2% bytes of memory. Assume that an IBM PC has 1 MB memory
(1024 x 1024 bytes). Its bootstran rrog.am and BIOS ROM addresses are between 15 x 210 (= 0xF0000) and
220 _ 1 (= OxFFFFF). RAM addresses are between 1 X 216 (= 0x10000) and 15 x 2'6 — 1 (= OXEFFFF).

Random Access Model of Memory A simple model for RAM and ROM both is the random-access
model of memory when all memory operations take the same amount of time independent of the address of
byte or word in memory. Assume that the memory system will support two operations: load (read operation
into processor from me.uory) and store (read operation from processor into memory). The random access
model states as *-'tows: From the memory, a data byte, a word, a double word, or a quad word may be
accessed from or at any addressable location, and a similar process is used to access from all locations. There
is equal acce.s time for a read or write that is independent of a memory address location. This mode differs
from another model, called serial access model. :

Store and Load (Write and Read) Instructions Most high performance organizations allow more
than 1-byte of memory (generally four bytes) to be loaded or stored at one time. Generally, a load or store
operation operates on a quantity of data equal to the system’s bus width, and the address sent to the memory
system specifies the location of the lowest-addressed byte of data word(s) to be loaded or stored. Each instruction
mostly has the opcode followed by operands. Store operations need two operands, a value to be stored and the
address in which that the value should be stored. They place the specified value in the memory location
specified by the address. ‘ ’ . ' ' : .

Load operations need an operand that specifies the address containing the value to be loaded and return
(fetch) the contents of that memory Jocation into their destination (register), which is specified by another operand.

Using this model, the memory can be thought of as functioning similar to a large sheet of lined paper,
where each line on the page represents a 1-byte storage location. To write (store) a value into the memory, we
count down from the top of the page until we reach the line specified by the address, erase the value written "
on the line and write in the new value. To read (load) a value, we count down from the top of the page until we
reach the line specified by the address, and read the value written on that line.

Alignment of Multibyte Store and Load in a Memory Organization Some memory organization
requires loads and stores to be “aligned”. Assume that a 4-byte word has been aligned at address 0x000C or
0x1000, which is a multiple of 4. This simplifies the organization of the memory system as follows:

When a memory organization require loads and stores to be “aligned,” it means that the address of a
memory reference must be a multiple of the size of the data being loaded or stored, so a 4-byte load must have an
address that is a multiple of 4, an 8-byte store must have an address that is a multiple of 8, and so on. Other
systems allow unaligned loads and stores, but take significantly longer to complete such operations than aligned
loads.

ARM processor memory addresses are aligned either in multiples of four or two or one byte addresses.
ARM permits three data types: four bytes word or two byte half word or 1-byte word, which stores at addresses
in multiple of 4 or 2 or 1, respectively.

Example 2.9 o |
'€a) Assume that a given membry~‘organizatio.r‘1 require loads and stores to be “aligned”. Then a 32-bit
- systém loads or stores 32 bits (4 bytes) of data with each operation into the 4 bytes that start with the

_ operation’s address, so a load from location 0x424 would return a 32-bit word containing the bytes
in locations 0x0424, 0x0425, 0x0426 ad 0x0427.

' | Embedded Syskms

(b) Assume that a given organization require loads and stores to be not aligned. A 32-bit system lo&*
or stores 32 bits (4 bytes) of data with each operation into the 4 bytes that start with the operation’s, 1
address, so a load from location 0x423 would return a 32-bit word containing the bytes in
location 0x0423 0x0424 0x0425 and 0x0426, as in such organizations the store or load -
address can be any number, not necessarily a multiple of 2 or 4.

Little Endian and Big Endian in a Memory Organization Some processor and memory
organizations require little endian and other big endian aligned multiple bytes when there is store into the
memory or load into the processor from memory. The ARM processor permits programming at the start and
enables a programmer to define one of two possible word-alignments, little endian or big endian, at the
beginning. It is important to know how organization orders the bytes written at the memory.
(@) In a little-endian system, the least-significant (smallest value) byte (8-bit) of a word (of 16 or 32-bit) is
written into the lowest-addressed byte, and the other bytes are written in increasing order of significance.
(b) In abig-endian system, the byte order is reversed, with the most significant byte being written into the
byte with the lowest address. The other bytes are written in decreasing order of significance.
Example 2.10
1. Two different ordering schemes are used in modem computers: little endian and big endian. Assnwne
that a word of 32 bits is 0X90ABCDEEF, and the address where the word stores when writteh, is
0x1000. The following shows an example of how a little-endian system and a big-endian syst&m

would write a 32-bit (4-byte) data word to address 0x1000. S
Little-endian system and a big-endian system i
Address 0x1000 0x1001 0x1002 Ox1003
Little Endian EF CDh AB 90
Big Endian 90 "~ AB Cb EF

In general, programmers do not need to know the endianness of the system they are working on, except when
the same memory location is accessed using loads and stores of different lengths. For example, if a
1-byte store of 0 into location 0x1000 was performed on the 32-bit systems in Example 2.10, a subsequent
32-bit load from 0x1000 would return 0x90ABCDOO on the little-endian system and OxOOABCDEF on the big-
endian system. Endianness is often an issue when transmitting data between different computer systems, as big-
endian and little-endian computer systems will interpret the same sequence of bytes as different words of data.
To get around this problem, the data must be processed to convert it to the endianness of the computer that will
read it.

Figures 2.10 and 11 described the memory, processor and IO units organized on the buses. It can be safely
concluded that the memory organization has a tremendous impact on computer system performance and is
often the limiting factor on how quickly an application executes. Both bandwidth (how muc. data can be
loaded or stored in a given amount of time) and latency (how long a particular memory operation takes to
complete) are critical to application performance.

Other important issues in memory system design include protection (preventing different programs from
accessing each other’s data) and how the memory system interacts with the 1O system.

¢
i

8051i:§nd Advanced Processor Architectures, Memory Organization and Real-world interfacing

There may be on-chip memories as RAM and/or register files, windows, caches and ROM in a micro-
processor.

The caches are the integral parts of the memory-organization within a system. The software designer
should enable the use of caches by an appropriate instruction, to obtain greater performance during the run of
a section of a program, while simultaneously disabling the remaining sections in order to reduce the power
dissipation and minimize energy requirements. Hardware designers should select a processor with multiway
cache units so that only that part of a cache unit gets activated that has the data necessary to execute a subset
of instructions. This also reduces power dissipation.

Processor Memory Organization: Princeton Architecture Figure 2.23(a) shows processor and
memory organization in Princeton architecture. 80x86 processors and ARM7 have Princeton architecture for
main memory. Vectors, pointers, variables, program segments and memory blocks for data and stacks have
different addresses in the program in Princeton memory architecture.

Processor Memory Organization: Harvard Architecture Figure 2.23(b) shows processor and
memory organization in Harvard architecture. A processor having Harvard main-memory architecture has
distinct address spaces, control signal(s), processor instructions, and data paths for the bytes for data and for
program. (The 8051-family microcontrollers have Harvard architecture.)

Vectors & Pointers Program
Program Program Memory Viemory

d dat Read [V 7
a?}ontar; {Wrglae__ E=—J| aswellas 7

Signals Dg- Dy % Eda(t;el\sﬂ:gory Mgﬁ;‘g
From {? <é 8:%%861
.

BIU to \gactors &
ointers
Latch ~ Address ?5('t:oF;’ F_1)
Decoders ~Aa %
Stacks
Program memory has Boot Date Memory has " t2CkS A
up Program, Functions, Input data as well —
Routines and Tasks as Ovtput data
(@
Program code
Signals read enable Program
A e— Memory
. Addresses
Latch Address between
Do Po-Aq1)l | oxo00
ecoder
77 cran
w Data Memory
Addresses
Do~ Dim-s — between
C T 0x00.00 to
Control m OxOFF.FF
{ Read
Signals (0to 29-1)
Write

(b)
Fig. 2.23 (a) Processor and memory organization in Princeton architecture
(b) Processor and memory organization in Harvard architecture

. Embedded Systems

Harvard architecture helps in handling streams of data that are required to be accessed in cases of single
instruction multiple data type instructions and DSP instructions. Separate data buses ensure simultaneous
accesses for instructions and data. Program segments and memory blocks for data and stacks have separate
sets of addresses. Control signals and read-write instructions are also separate for accessing the program
memory and data memory.

It must be remembered when coding in assembly and when organizing the main memories of certain
processors, that their memory organization may be Harvard architecture. Program memory and data memory
have separate set of addresses and have separate instructions for area accesses. A processor having Harvard
architecture is needed for access to streams of data. Examples are (i) single instruction multiple data type
instructions and (ii) DSP instructions.

For example, consider a DSP computation of the following expression in a ‘Finite Impulse Response (FIR)
filter’. An n-th filtered output sequence, y, = X(a;.x, — i), where the sum is made fori=0, 1, 2, ..., N~I. Here
i, n and N and the integers. If N = 10, then for each value of y, first one of the 10 coefficients, a;, and one of the
10 input sequences, x, are multiplied and then the summation is done. The total computations for all 10 values
of n will need 100 multiplications and 100 summations. Storing and accessing the coefficients from a separate
set of memory-addresses in a separate memory will allow fast access by using a separate set of buses.

" 2.5 INSTRUCTION-LEVEL PARALLELISM

Several instructions can execute in parallel. Two or more instructions can execute in parallel as well as
in sequence in pipelines. In the instruction level parallelism (ILP), two parallel pipelines in a processor and
two instructions I, and I, execute in parallel at separate execution units. Figure 2.24 shows instruction-level
parallelism in pentium processor.

. U Pipeline i
Pipeline Latch
""""""""""" 2
Fetched an :?;i?s | Execute Iy, Write
instruction I, Decode I, and n- acc;ess ﬁLU Result I,
and caches
address

- !) — -

One clock Cycle ¢; One clock Cycle ci.q One clock Cycleci,» One clock Cycle ¢i.3 One clock Cycle ¢j.4

o P : o

Read
Fetched an Decode Inputs Execute Write
instruction In+1 hnst In+1, @CCESS Result
Ins1 and ALU and Ins1
i ; address ; caches :

V Pipeline
Fig. 2.24 Instruction level parallelism in a processor

2.5.1 Pipelined and Superscalar Units

High processor performance is required in many cases. For example, real-time signal processing. Pipelining
and superscalar operations have now become essential. The hardware designer selects the processor as per the

8051?' and Advanced Processor Architectures, Memory Organization and Real-world Interfacing

required MIPS or MFLOPS performance. [A multi-processor system (Section 6.4.1) will be needed for very
high performance requirements in mobile phones, digital camera, speech processing and video systems.]

Advanced processing units include instruction pipelining unit, which improves performance by processing
instructions in multiple stages and the parallel units for superscalar execution, which improves performance
on execution of two or more instructions in paraflel execution units.

How do pipeline and superscalar units give »sﬁch higher performance? Let us look at Example 2.11.

Example 2.11

Pipeline and Superscalar Execution
Step 1: Let us assume that the processor instruction cycle time is 0.02 ps (at 50 MHz operation) and that
the processor executes an instruction in one clock cycle. The processor performance expected without
advanced processing units will be 50 MIPS. :

Step 2: Assume there is a three-stage pipeline as in ARM7. Let us, for the moment, ignore the effect of
branching (called branch penalty). Three instructions will process in three clock cycles, but each clock cycle
period can be made = 1/3 of the earlier period, as the division of processing units in stages divides the circuit
also. The maximum expected performance of the processor without superscalar but with pipeline will be
= 150 MIPS.

Step 3: Assume there is a two-line superscalar. Let us ignore the effects of unaligned data (data dependency
penalty). Six instructions can process in single clock cycle with the three-stage pipeline and two superscalar
units. The maximum performance will now Lz six times the processor cycle time, 300 MIPS.

We now explain the two terms used: branch penalty and data dependency penalty.

Branch penalty: If a branching instruction is encountered at a multistage pipeline, then the instructions executed
in part at the preceding stages become redundant. These instructions have to be executed in full again later on
after. completion of the loop or return from a routine. The time required for re-processing these is called branch
penalty.

Data dependency penalty: Assume that there are two instructions in two execution lines during a
superscalar operation. Further, that one instruction depends on the data output of another. This is
known as improper alignment. Thus, the two instructions are not aligned before putting them in
separate lines. One instruction will now have to wait and cannot proceed further till the other
instruction is executed. The waiting time is the data dependency penalty.

Superscalar processors possess hardware to ev* . instruction-level paralielism from sequential programs
and possess hardware to efficiently take care of the collisions in execution unit and of data and control hazards.

During each cycle, the instruction issue logic of a superscalar processor examines the instructions in the
sequential program to determine which instructions may be issued on that cycle. If enough instruction-level
parallelism exists within a program, a superscalar processor can execute one instruction per execution unit per
cycle, even if the program was originally compiled for execution on a processor that could only execute one
instruction per cycle.

SHARC supports instruction level parallelism. The SHARC processor has instructions that are combined
as single instruction word. [SHARC also supports memory parallelism; its processor has a modified Harvard
structure called super Harvard structure (Figure 2.20). Multiple data can be fetched in a single instruction.]

ILP capability is one of the greatest advantages of superscalar processors and is the reason why virtually
all high performance CPUs are superscalar processors. Superscalar processors can run programs that were
originally compiled for purely sequential processors, and they can achieve better performance on these programs
than processors that are incapable of exploiting the ILP.

Embedded Systems

Thus, users who work on new systems containing superscalar CPUs can install their old programs on those
systems and see better performance on those programs than was possible on their old systems.

The use of high performance processor ICs and cores.in embedded systems providing billion opeletions
per second has become feasible due to the great advances in VLSI and in ILP and multi core processor
design technology.

" 26 PERFORMANCE METRICS

Sophisticated embedded systems for high computing performance applications needs optimized use of
resources, power, caches and memory. The following are the processor performance metrics:

1. (a) High MIPS, (b) high MFLOPS and (c) high Dhrystone benchmark program-based MIPS

2. Optimized compiler unit performance in the processor.

The above metrics are provided by the latest innovatively designed processors. A high-performance processor
combines capabilities with optimized use of resources, power, caches, and memory.

A benchmarking program is called Dhrystone, developed in 1984 by Reinhold P. Weicker. It measures the
performance of a processor for processing integers and strings (characters) both. It uses a benchmark program
available in C, Pascal or Java. It benchmarks a CPU and not the performance of IO or OS calls. Dhrystones
per second is the metric used to measure the number of times the program can run in a second. 1 MIPS = 1757
Dhrystone/s. [Why? VAX11/780, which executed 1 MIPS, ran the Dhrystone benchmark program 1757 times
(refer to http://www.webopedia.com/ TERM/D/Dhrystone.html.)]

There is EDN Embedded Benchmark Consortium (EEMBC) [EDN is a group that publishes the International
magazine EDN, which is dedicated to Embedded System information. Refer to http://www.e-insite.net/edmag/].
EEMBC proposed five-benchmark program suites for 5 different areas of applications of embedded systems:
(a) Telecommunications, (b) Consumer Electronics, (c) Automotive and Industrial Electronics, (d) Consumer
Electronics, and (e) Office Automation. These program suites are also used for measuring and comparing
embedded system processor performances.

Different systems require different processor performance in terms of processing speed. A hardware designer
takes these into view and selects an optimum performance-giving processor.

“27 MEMORY-TYPES, MEMORY-MAPS AND ADDRESSES

2.7.1 Memory in a System

Section 1.3.5 introduced the memory in a system. A simple credit—debit transaction card may require just 2 kB
of memory. On the other hand, a smart card for secure transactions when embedding a Java program for cryptographic
functions may require 32 kB (typical value) memory. A complex embedded system may need huge memory.

The following subsections explain and look at certain important aspects of the memory. The various memory
are described from the point of view of an embedded systems hardware or software designer.

ROM: Its Uses, Forms and Variants ROM non-volatility is a most important asset and it is extremely

useful to embed codes and data in a system. ROM is a loosely used term. For a hardware designer, it may mean
masked ROM, PROM, OTP-ROM, EPROM and EEPROM. In a strict sense, ROM means a masked ROM

8051 ;qnd Advanced Processor Architectures, Memory Organization and Real-world Interfacing

made at a foundry from the programmer’s ROM image file (Section 1.4.1). ROM that embeds the software or an
application logic circuit is in one of the three forms: masked ROM, PROM and EPROM. When ROM is to be
programmed during runtime and is to hold the processed result, either an EEPROM or flash memory is used.

(i) Masked ROM A masked ROM is built from a circuit that has r inputs (A to A,_,) and 8 outputs (D, to
D,). [Byte storing at an address is most common.] The circuit for masked ROM is one of a set of 2* combinational
circuits. Appropriate masking gives the desired set of outputs at each combinational circuit. Certain links fuse
and others that are masked do not fuse. [A combination circuit is a circuit made up of logic gates with a
distinct set of output logic states during distinct input logic states. It has a distinct truth table for r inputs x 8
outputs. As soon as the inputs change (or withdraw), the output also changes in this circuit.].

The embedded software designer (after thorough testing and debugging) provides to a manufacturing
foundry a file having a table of desired output bits for the various combinations of the input address bits. A
program called locator creates this table. The manufacturer prepares the programming masks and then programs
the ROM at a foundry. This ROM is returned to the system manufacturer.

Normally, one time masking charge could be very high. Generally, therefore, a system manufacturer will
place the order, and the manufacturing foundry will accept the order for a minimum of 1000 pieces. The ROM
is a cost effective solution to a bulk user of ROMs for the manufacture of embedded systems. An embedded
system manufacturer using a masked ROM does not have to use a device programmer (ROM burner) each
time a system ROM is made using EPROM or PROM or flash.

(ii) EPROM, E2PROM and OTP ROM Special versions of ROM can be programmed at the designer’s
or manufacturer’s site for an embedded system with the help of a device programmer. One version is EPROM.
It is an ultraviolet ray erasable and device programmer Programmable Read Only Memory. Erasing the
device means restoring 1 at each bit in the cell arrays at each ROM address. Another version is EZPROM
(EEPROM). It is an Electrically Erasable, and Programmable Read Only Memory. Examples of EPROM and
EEPROM are 2732, a 4 kB EPROM, 28F256, a 32 kB EEPROM and 28F001 is 512 K x 16-bit EEPROM.

EEPROM erasing during an application-program run is done by sending all eight data bus bits as 1s for the
write in the presence of inputs of V_, called programming voltage and short duration write pulse. Sending Is
and Os in the byte by a write instruction results in EEPROM programming during a program run. Erasing of
a byte must precede the write. The processor with the system program can do erasing and writing, as it is
similar to the writing in a RAM. What then, is the difference between the EEPROM and RAM? The difference
is that in RAM, the read and write timing cycles are identical. Here, the write cycle has to be longer than in
case of RAM, and it must succeed the erase of the byte by writing OXFF. Further, an addition voltage V,
signal is needed when erase and write occurs to the EEPROM The number of times an EEPROM can be
written is one million times plus. There is no limit for RAM, and a practically infinite number of writes is
possible without first writing 1s in RAM.

Flash memory is a form of EEPROM in which a sector of bytes can be erased in a flash (very short
duration corresponding to a single clock cycle). [Lately flashes of even ~3 V form and of capacity 2, 4 and
8 GB have become available even in card or stick form, which enables insertion in camera or pocket computer.]
A sector can be from 256 B to 16 kB. The advantage over EEPROM is that the erasing of many bytes
simultaneously saves time in each erase cycle that precedes the write cycles. The disadvantage is that once a
sector is erased, each byte writes into it again one by one, and that takes too long a time. A new version of
flash is boot back flash. A sector is reserved to store once only at the time of first boot. Later on it is protected
from any further erase. In other words, it has an OTP sector also that can be used to store ROM images like in
a ROM. Nowadays, flash has replaced EPROM in the systems.

PROM (an OTP ROM, a one time device programmer) is another form. A PROM once written is not erasable.

Embedded Systems

(iii) Uses of ROM or EEPROM or Flash Figure 1.5 showed what a ROM embeds—program codes for
various tasks, interrupt service routines, operating system kernel, initialization (bootstrap program and data)
and the standard data or table or constant strings. '

An EEPROM is usable by erasing over one million times. It can be erased during runtime itself. Flash memory
is usable about 10,000 times for repeated erasing followed by programming during the runtime. The PROM is
written only once by a device programmer or the first system run. '

Three examples of EEPROM memory applications are as follows. (i) Storing current date and time in a
machine. (ii) Storing port statuses. (iii) Storing driving, malfunctions and failure history in an automobile for
use by mechanics later on.

Three examples of flash memory applications are as follows. (i) Storing pictures in a digital camera.
(ii) Storing voice compressed form in a voice recorder. [Recall of prerecorded message in a phone.] (iii) Storing
messages and contacts in a mobile phone.

Examples of use of an OTP ROM are as follows. (i) Smart card identity number and user’s personal
information. (ii) Storing boot programs and initial data like a pictogram displaying a seal or monogram.
(iii) ATM card or credit card or identity card. Once the various details are written at the bank and handed over
to the account holder, there is no modification possible in the embedded PROM at the card. Just as a paper
holds information permanently once written or printed, so also does a PROM.

A flash or PROM or ROM is not only used for program and data storage, but also for obtaining the
preprogrammed logic outputs and output sequences for the given sets and sequences of inputs. [Inputs are
given analogous to an address signal by the processor and outputs are obtained analogous to those obtained
during a processor read cycle.] Assume that there are 8 inputs (r = 8). The truth table for it will have 256
combinations. 8 x 8 ROM can be programmed to generate 256 sets of 8-bit outputs for each combination.
Examples of applications of preprogrammed logic outputs are as follows. ‘

1. Used to hold language-specific bits for the fonts corresponding to each character in a printer.

2. Used to hold the image bits for a display. A pictogram generates from these bits. A ROM is used in a
display circuit. It stores the bytes for the full bit-image corresponding to the pixels for a pictogram.
Sequential changes at the inputs repeatedly generate the full pictogram.

3. Ina CISC a control ROM at a micro-programmed unit is used. It stores sets of microinstructions for
each processor instruction. Each set of microinstructions is stored in a sequence such that it specifies
a set of signals for the various fetch and executing unit during execution of an instruction fetched from
the memory.

RAM A system designer considers RAM devices of eight forms. These forms are ‘SRAM’, ‘DRAM’,
‘NVRAM’, ‘EDO RAM’, ‘SDRAM’, ‘RDRAM’, Parameterized Distributed RAM and Parameterized Blo« .
RAM. ‘

(i) Uses of RAM RAM stores the variables during a program run and stores the stack (Section 1.3.5). It
stores input and output buffers, for example, of speech or image. It can also store the application program and
data when the ROM image is stored in a compressed format in an embedded system and decompression is
done before the actual run of the system.

1. SRAM is used most commonly for designning caches and in embedded systems and microcontrollers.

2. DRAM is used mostly in high performance computers or high memory density systems.

3. EDORAM s used in systems with buses to the devices when operating with clock rates up to 100 MHz;

a zero-wait state is needed between two fetches, and there is single-cycle read or write.

8051 tand Advanced Processor Architectures, Memory Organization and Real-world Interfacing i 109

4. SDRAM synchronizes the read operations and keeps the next word ready while the previous one is
being fetched. This device is used when buses can fetch or send to the processor up to speed of 1 GHz.

5. RDRAM accesses in bursts the four successive words in a single fetch and thus gives above 1 GHz

. performance of the system.

6. Parameterized distributed RAM is the RAM distributes in various system subunits. 10 buffers and
transceiver subunits can have a slice of RAM each and the system stack can be at another slice. Distribution
provides buffering of memory at the subunits before they are fetched and processed by the processor. It
facilitates faster inputs from the IO devices than the processor system buses access the I0s using system
memory.

7. Parameterised block RAM is used when a specific block of the RAM is dedicated for use by a subunit

. only, for evample, MAC unit. A parameterized block RAM is used when an access by the system or
TO or internal bus is slow compared to the processing speed of a subunit.

Different types of memory in varying capacities are available for use as per requirement. (1) Masked ROM
or EPROM or flash stores the embedded software (ROM image). Masked ROM is for bulk manufacturing.
(2) EPROM or EEPROM is used for testing and design stages. (3) EEPROM is used to store the results
duripg the system program runtime. It is erased byte-by-byte and written during the system-run. It is useful
to store modifiable bytes, for example, the runtime system status, time and date and telephone number. (4)
Flash stores the results byte by byte during a system run after a full sector erase. (5) Flash is thus very
useful when a processed image or voice is to be stored or a data set or system configuration data is to be
stored, which can be upgraded as and when required. For example, a new image (after compressing and
pro&ssing) can be stored and the old one erased from a sector in a single instruction cycle. (6) Boot block
flashalso has an OPT sector(s) to store the boot program and initial data or permanent system configuration
data. It serves by storing the ROM image or its part in the OTP sector(s) and, at the same time, serves by
storing as a flash in other sectors. (7) RAM is mostly used in SRAM form in a system. (8) Sophisticated
systems use RAM in the form of a DRAM, EDO RAM, SDRAM or RDRAM. (9) Parameterized distributed
RAM is used when the IO devices and subunits require a memory buffer and a fast write by another
system. (10) Subunits like MAC when operating at fast speed use separate blocks of RAM.

2.7.2 Address Allocations in Memory

Figure 2.23 (a) showed memory addresses needed in the case of Princeton architecture in the system.
Figure 2.23 (b) showed memory addresses needed in the case of Harvard architecture.

A system memory allocation-map is not only a reflection of addresses available to the memory blocks, and
the program segments and addresses available to IO devices, but also reflects a description of the memory and
IO devices in the system hardware. It maps guides to the actual presence of the memory at the various units,
EPROM, PROM, ROM, EEPROM, flash Memory, SRAM (static RAM), DRAM (dynamic RAM) and 10
devices. It reflects memory allocation for the programs, and data and 10 operations by a locator program. It
shows the memory blocks and ports (devices) at these addresses.

System IO devices map may be designed separately. This not only reflects the actual presence of the 10
devices, but also guides the available addresses of the various device registers and port-data. [An example of
a device is a timer. IO devices are the peripheral units of the system.]

The following are examples that describe memory allocation maps using the locator.

i

Example 2.12

Consider a memory map for an exemplary embedded system—a smart card needing a 2 kB memory, a
256 B RAM mainly for the stacks, EEPROM 512 B for storing the balance amount under credit ot debit
and the previous transaction records on the card. The memory locator or linker script program for this
system to define a memory allocation map [Figure 2.25(a)] is as follows. !

1. Memory

2. {ram : ORIGIN = 0x10000, LENGTH = 256
3. eeprom : ORIGIN = 0x20000, LENGTH = 512
4. rom : ORIGIN = 0x00000, LENGTH = 2K

5. 1}

Example 2.13

Consider a Java embedded card with software for encrypting and deciphering transactions. Assume thak the
system needs 32 kB ROM, RAM of 4 kB, and EEPROM 512B for storing not only the balance amount under
credit or debit but also the cryptographic keys and previous transaction records on the card. So the memory
locator or linker script program for this system defines memory map [Figure 2.25(b)] as follows. N
Memory

1. { ram : ORIGIN = 0x10000, LENGTH = 4K

2 eeprom : ORIGIN = 0x20000, LENGTH = 512

3. rom : ORIGIN = 0x00000, LENGTH = 32K

4.)

One can also make the following important observation from Examples 2.12 and 2.13. There are memory
address gaps between the origin of ROM, RAM and EEPROM in spite of the very small lengths of available
memory. This gap is due to a design feature: the designer provides for expansion of these-memories in future
so no change will be needed in the interfacing decoder circuit between the memory and processor. Further, its
software program has to make minimal changes. The changes will only be in length. This is because when
there is no gap the origin will also change. This feature ensures that any future changes in the program code
sizes and data sizes will not need change in the locator codes. One feature of a locator is also that it does not
relocate the addresses of the special purpose ports that are dedicated to a particular IO task or dedicated to the
device driver read and write operations.

The final step of the design process in an embedded system is that the bytes locate at the ROM from the
image for the bootstrap (reset) program and data, the initialization data as well as the following standard daia
or table or constant strings device driver data and programs, the program codes for various tasks, interrupt
service routines and operating system kernel. [The bootstrap program consists of the instructions that are
executed on system reset. The bootstrap data example is for stack pointer initialization. The initialization data
may be for defining initial state and system parameters. The constant strings may be for initial screen display.]
There is a shadow segment in the ROM. The shadow segment has the initialization data, constant string, and
the start-up codes that are copied into the RAM by a shadow segment copy program at system boot up. When
a start-up code (booting) program is executed, a copy of the shadow segment from the ROM is generated in
the RAM. The RAM also holds the data (intermediate and output data) and stack. A compressed program
Jormat locates at the ROM in case of large ROM image is required for the system program. This is because
decompression program plus compressed image will need less memory than the large ROM image. The start-

8051 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing m

up code task is to generate the decompressed program codes and store them into the RAM before system starts
other programs. The processor executes all other programs subsequently by fetches from the RAM.

For Program and
Input Data

For Static variables
of Program
and Program Stack

For Current Balance
and other output data

(a)
Data from

.dat file

Data from
xt file

Copy of
ROM on
Initialization

Stack

Base

Segment
Program
variables

Temporary
variables

(2]

ROM

| rav |

EEPROM

0x00000
0x007FF
0x10000

0x100FF
0x20000

ROM

DATA

DATA
RAM

DATA
RAM

DATA

O0x201FF

0x10000
SHADOW SEGMENT
0x1000F

0x10080

0x10100
0x10010

0x1002F
0x10030

0x1007F

ROM
RAM
EEPROM
(b)
Data from ___— ROM
.dat file
Data from — =
txt file
Copy of
ROM on DATA
AR RAM
Initialization
DATA
Stack RAM
Base
Segment gﬂf‘
Program
variables
Temporary DATA
variables RAM
(d)

0x00000
Ox07FFF

0x10000

Ox10FFF
0x20000

0x201FF

0x00000;

OXOFFFF

0x10000
SHADOW SEGMENT
Ox100FF

0x10900

0x11000
0x10100

Ox108FF
0x10900

Ox10FFF

Fig. 2.25 Examples of Memory maps in embedded systems—(a) smart card needing 2 kB memory
(b) Java embedded card with software for encrypting and deciphering transactions
(c) memory map sections in a smart card (d) memory map sections in another smart card

A processor may have predefined memory locations for the initialization boot record. For example, in
80960, boot record consists of 12 words. The record is stored at ROM addresses, 0xFFFFFF00 to OXFFFFFE2C.

Example 2.14

Consider memory map for an exemplary card in which there are sections at the memory allocation
map. Consider its description in a locator program. The sections for an exemplary embedded system,
smart card memory map [Figure 2.25(c)] may be defined as follows.

1. SECTIONS

112 Embedded Systems

2. {/* Stack Top Location for 128 B RAM*/

3. _TopOfsStack = 0x10100;

4. /* Bottom of Heap */

5 BottomOfHeap = 0x10080;

6. text rom :

7. {/* Debit-credit card program instructions are at the text file
named here*/ i

8. * (----.txt) i

9. 1}
10. data ram :
11. |

12. /* Shadow Segment for 16 byte of Initialised Data at RAM for a copy
from ROM from */

13. _DbataStart = 0x10000;

14. /* Debit-credit card shadow segment data at the data file named

here*/
15. * (----.data)
16. _DatakEnd = 0x1000F;
17. }

18. /* Command for copy into the RAM */
19. > rom

20. bss

21. {

22. /* Base Segment for 32 byte of Program Variables Data at
RAM */

23. _bssStart = 0x10010;
24. /* Smart card base segment data at the base segment data
file named here*/

25. * (----.bss)

26. _bssiEnd = 0x1002F;
27. }

28. }

Example 2.15

Consider another memory map [Figure 2.25(d)] for another exemplary card. The locator specifies
different map sections as follows: |

SECTIONS .
1. {/* Stack Top Location for 4 kB RAM*/
2. _TopOfStack = 0x11000; 3
3. /* Bottom of Heap */ :

8051 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing 13

4.'_BottomOfHeap = 0x10900;
text rom :

(52}

6. {/* Encrypting Java Card program instructions are at
i the text file named here*/

7. a. (=---.txt)
8. data ram :
9. :{

10." /* Shadow Segment for 256 bytes of Initialized Data at RAM for a copy
from ROM from */

11. _DataStart = 0x10000;
12. /* The card shadow segment data at the data file named here*/

‘ a. (----.data)
13. ._DataEnd = O0x100FF;
14.)}
r /* Command for copy into the RAM */
15. a. rom
16. bss
17,

18. /* Base Segment for 2 kB Program Variables Data at RAM */
19. _bssStart = 0x10100;
20. /* Java card base segment data at the base segment data file

‘ 'named here*/ /
21. a. (----.bss)
22, _bssiEnd = 0x108FF;
23. }
24. }

The memory map that includes the device IO addresses is designed after appropriate address allocations of
the pointers, vectors, data sets and data structures. If the main memory is of Harvard architecture, the program
memory map will be separate. For example, 8051 reads from the program memory by a separate set of
instructions (input—output instructions).

™ 23 TPROCESSOR SELECTION

A hardware designer must take into account following processor-specific features:
1. A processor, which can operate at higher clock speed, processes more instructions per second.
2. A processor gives high computing performance when there exist (a) Pipeline(s) and superscalar
architectures, (b) pre-fetch cache unit, caches, and register-files and MMU and (c¢) RISC architecture.
3. A processor with register-windows provides fast context switching in a multitasking system.
4. A power-efficient embedded system requires a processor that has programmable auto-shut down feature
for its units and programmability for disabling use of caches when the processing need for a function

14 Embedded Systems

or instruction set is not constrained by limit on execution deadline. Processor uses Stop, Sleep and
Wait instructions, and special cache design.

5. A processor that has a burst mode accesses external memories fast, reads fast and writes fast.

6. A processor with an atomic operation unit provides hardware solution to shared data problems when
designing embedded software, else special programming skill and efforts are to be made when program
uses shared variables and data buffers among multiple tasks.

7. When coding in assembly language or designing compiler or locator, data may store in big-endian
mode in a system and the lower order bytes store at higher address: for example, in Motorola processors.
Data may also store in little-endian mode in a system. Lower order bytes store at lower addresses and
vice versa: for example, in Intel processors. A processor may also be configure at the initial program
stage big-endian or little-endian storage of words: for example, the ARM Processors.

The StrongArm family processors from Intel and TigerSHARC from Analog Devices have high power
efficiency features.

The processor selection processes can be understood by considering four representative cases. Firstly a
design-table similar to Table 2.7 is built. Then a processor having the required structural units and capable of
giving the desired processor performance in system is chosen.

1. Case I: Systems in which processor instruction cycle time ~ 1 pus and on-chip devices and memory
can suffice. Examples are automatic chocolate vending machine, 56 kbps modem, robots, data
acquisition systems like an ECG recorder or weather recorder or multipoint temperature and pressure
recorder and real-time robotic controller.

2. Case 2: Systems in which processor instruction cycle time ~ 10 to 40 ns required, on-chip devices and
memory do not suffice and medium processor performance is required. Examples are 2 Mbps router,
image processing, voicedata acquisition, voice compression, video decompression, adaptive cruise
control system with string stability and network gateway.

3. Case 3: Systems in which instruction cycle times of 5 to 10 ns required and high MIPS or MFLOPS
performance is needed. Examples are multiport 100 Mbps network transceiver, fast 100 Mbps switches,
routers, multichannel fast encryptions and decryptions systems.

4. Case 4: Systems in which instruction cycle time of even 1-ns does not suffice and multi-processor
system is required along with use of the floating point and MAC units. Examples are voice processing,
video processing, realtime audio or video processing and mobile phone systems.

Different systems require different processor features. A hardware designer takes these into view and
selects an optimum performance-giving processor.

2.8.1 Microcontroller Selection

There are numerous versions of 8051. Additional devices and units are provided in these versions. A version
and microcontroller is selected for embedded system design as per the application as well as its cost.

1. Embedded system in an automobile, for example, requires a CAN bus (Section 3.10.2). Then a version
with CAN bus controller is selected.

2. An 8051 enhancement 8052 has an additional timer.

3. Philips P83C528 has IC serial bus (Section 3.10.1).

4. 8051 family member 83C152JA (and its sister JB, JC and JD microcontrollers) has two direct memory
access (DMA) channels on-chip. (Section 4.8) The 80196KC has a PTS (Peripheral Transactions
Server) that supports DMA functions. [Only single and bulk transfer modes are supported, not the
burst transfer mode.] When a system requires direct transfer to memory from external systems, the
DMA controller, improves the system performance by providing for a separate processing unit for the
data transfers from and to the peripherals.

8051 b'sd Advanced Processor Architectures, Memory Organization and Real-world Interfacing @

Table 2.7 Essential processor capabilities in four exemplary set of systems

Processor capability ~ Case 1: Case 2: Case 3: Case 4:
Required Automatic Voice data Multi-port Voice
Chocolate Vending acquisition, Voice-data Network Transceiver, Processor,
Machine, Data Acqui- Compression, Video Fast Switches, Routers, Video
sition System, Real Compression, Adaptive Multi channel Fast processing and
time Robotic Control ~ Cruise Control System Encryptions and Mobile Phone
with String Stability, decryptions Systems
Network Gateway
Required processor Microcontroller Microprocessor Multiprocessor System Microprocessor
+DSP based
Multiprocessor
System
Processor instruction ~0.5to1 0.01 -0.04 0.0005 - 0.001 0.001 - 0.0005
cycle in ps (typical)
Processor performance Low suffices Medium to high High Very High
Internal bus width 8 32 32 64
in bits
CISC or RISC Any RISC RISC RISC
architecture
Program counter 16 32 32 32
and stack pointers
Stack at external External External or internal Internal Internal
or internal memory
On-chip atomic - - Yes' -
operations unit
Pipelined and super- No Yes Yes Yes
scalar and pipelined
architecture
Off-chip RAM in No, on-chip suffices Yes Yes Yes
view of excessive
RAM needs
On-chip register No Yes Yes Yes
windows and files
due to fast context
switching needs
Interrupts handler Internal External External External
internal in micro- microcontroller
controller or external
to processor

(Contd)

116

Embedded Systems

Processor capability
Required

Case 1:

Automatic

Chocolate Vending
Machine, Data Acqui-
sition System, Real

Case 2:
Voice data

acquisition, Voice-data
Compression, Video
Compression, Adaptive

Case 3:

Multi-port

Network Transceiver,
Fast Switches, Routers,
Multi channel Fast

time Robotic Control Cruise Control System Encryptions and
with String Stability, decryptions
Network Gateway
Instruction and data No Yes Yes
caches and MMU
On-chip memory Yes, on-chip No, on-chip does No, on-chip does
flash or EPROM suffices not suffice not suffice
External interrupts l1to 16 1-2 128-256
Bit manipulation Used Heavily used Heavily used
instructions
Floating point No Yes No
processor
Streams of data No Mostly Not necessary ~ May be Yes
requiring Harvard
main memory
architecture
DMA controller No No Yes
channels
Exemplary 8051, 68HC11 or 12 80x86, 80860, 80960 ARM?7, Sunspare

processor family

or 16, 80196,
PIC16F84

Case 4: !
Voice - "
Processor, ;
Video ;
processing and
Mobile Phone
Systems '

Yes

No, on-chip
does not suffice:

16-32

Heavily used

Yes

Invariably Yes

May be Yes

ARMY, TMS
family DSPs,
PowerPC ;

Needed when multiple ports and multichannel operations need data sharing.

Example 2.16 Case Study of a Reai-t'me 2o 0t Control Svstem
1. A robotic system motor needs signalling at the rate above 50 to 100 ms. Hence there is enough; time
available for signalling and real-time control of multiple motors at the robot when we use a processor
with instruction cycle time ~1 ps. o
2. The processor speed need not be very high and performance needed is much below 1 MIPS. So no
caches and advanced processing units like pipeline and superscalar processing are required. !
3. A four-coil stepper motor needs only a 4-bit input and a DC motor needs a 1-bit pulse width modulated
output. Therefore an 8-bit processor suffices.]

4. Frequent accesses and bit manipulations at IO ports are needed. CISC architecture therefore sufﬁces.;
5. The program can fit in 4 kB or 8 kB of internal ROM on-chip. Stack sizes needed in the
program are small so that can be stacked in an on-chip 256 or 512-byte RAM. A

microcontroller is thus needed. No floating-point unit is needed.

i

8051 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing Ul? i

Microcontrollers appropriate for the above case are 8051, 68HC11, 68HC12, 68HC16 or 80196.
Microcontrollers 68HC12 and 68HC16 can be used due to availability of large number of ports. The 68HC12’s
instruction cycle and clock cycle time equals 0.125 ps. Number of ports equals 12 in 68HC12. Therefore, 6 or
more degree of freedom robot with 6 or more motors can be driven directly through these ports. STOP and
WAIT instructions in the processor save power when the robot is at rest!]

Example 2.17 Case Study of Voice Data Compression System

1.

Voice signals are pulse-code modulated. The rate at which bits are generated is 64 kbps. A suitable

~ algorithm can process the data compression of these bits with an instruction cycle time of ~ 0.01 to

-

0.04 ps (100 to 25 MHz) when the processor uses advanced processing units and caches. .
Let us assume that the processor instruction cycle time is 0.02 ps (50 MHz). With a three-stage
pipeline and two-line superscalar architecture, the highest performance will be 300 MIPS. {Refer to
Example 2.11 for an understanding of the computations of MIPS). It suffices for not only for voice
but also for video compression.

Frequent accesses and complex instructions may not be needed.

The program cannot fit in 4 kB or 8 kB of internal ROM on-chip, and stack sizes needed in the
program are big. Instead large ROM and RAM as well as caches are needed. '

No floating-point is needed as mostly the bit manipulation instructions are processed during
compression. '

Exemplary processors that are appropriate for the above case are 80x86 and ARM family processors.

Example 2.18 Case Study of Fast Network Switching System

1.
.
=

3.

4.
5.

Transfer rates of 100 MHz plus are needed in fast switches on a network. Assuming 10 instructions
per switching and transceiver action, instruction cycle time is ~ 0.001 plus. A multiprocessor system
is needed for GHz transfer rates.

Let us assume that the processor instruction cycle time is 0.01 ps (100 MHz). With a five-
stage pipeline and two-line superscalar architecture, the highest performance will be 1000 MIPS.
[Example 2.11]. Multiprocessor system is thus needed for 1000 MHz plus switches.

The processor should have RISC architecture for single cycle instruction processing at each
stage and line.

ROM and RAM as well as caches are required.

No floating-point is needed as mostly the bits are processed for I0s.

Exemplary processors that are appropriate for the above case are ARM7, ARM9 and Pentium.

Example 2.19 Real-Time Video Processing

fl.

+

|

Real-time video processing requires fast compression of an image needing use of DSP.
Many real-time tasks have to be processed: for instance, scaling and rotation of
images, corrections for shadow, colour and hue, image sharpening and filter functions. In
such cases, a multiprocessor system with DSP(s) and that has the best processing
performance is required. y

Exemplary processors that are appropriate for multiprocessor system are ARM9 integrated with TMS
family DSP(s) or ARM11 or TigerSHARC.

18 Embedded Systems

~—

~ 2.9 TMEMORY SELECTION

Once the software designer’s coding is over and the ROM image file is ready, the hardware designer is Jaced
with the questions of what type of memory and what size of each should be used. First a design-table, .as in
Table 2.8, is built. The memory having the required features and address space is chosen. Following are the
case studies. The actual memory requirement is known only after coding as per the design functions and
specifications. ROM and RAM allocations for various segments, data sets and structures will be available
from the software design. However, a prior estimate of the memory type and size requirements can be made.
[Remember, the memory are available as: 1 kB, 4 kB, 16 kB, 32 kB, 64 kB, 128 kB, 256 kB, 512 kB and
1 MB. Therefore, when 92 kB of memory is needed, then a device of 128 kB is selected.]

Example 2.20

(a) Case Study of an Automatic Washing machine :
Consider an automatic washing machine system. Assume that machine is not saving the pictures and
graphics. (a) An EEPROM’s first byte is required to store the state (wash, rinse cycle 1, rinse cycle_? and
drying) that has been completed. The second byte is required to store the time in minutes already spent
at the current stage. The third byte is needed to store the status of the user set buttons. Thus a 128 B
EEPROM at best should suffice in microcontroller. (b) Embedded software can be within 4 kB ROM at
the microcontroller. (c) RAM is needed only for a few variables and stacks. An internal RAM of 128 B
should suffice. (d) Therefore, no external memory is required with the system when using a
microcontroller. B

(b) Case Study of a Robotic :
Consider a robotic system. (a) EEPROM bytes are required to store the rest status of each degree of
freedom. Thus 512 B EEPROM in the microcontroller at best should suffice. (b) Embedded software ‘
can be within 32 kB ROM in the microcontroller. (c) RAM need is only for the variables and only
one stack is needed for the return address of the subroutine calls. Internal RAM of 512 B should
suffice. Therefore, no external memory is required with the system when using a microcontroller. ‘

Example 2.21 ‘
(a) Case Study of the Data Acquisition Systems for the sixteen-parameter channels and voice/ilhjage
processing during acquisition N
Consider a data acquisition system. Assume that there are sixteen channels and at each channel 4 B of data
store every minute. (a) Bytes are to be stored in flash memory. Assume that the results are stored in‘flash
memory for a day before it is printed or transferred to a computer. Thus 92 kB is the data acquired per day.
A 128 kB flash memory will thus suffice. (b) Embedded software can be within 8 kB ROM m% the
microcontroller. (c) RAM is needed only for the variables and only one stack is needed for the refurn
address of the subroutine calls. An internal RAM of 512 B will suffice. (d) Intermediate calculationsf are
needed for storing ADC results in the proper format. Unit conversion functions need to be calculal ,
which may necessitate a RAM of about 4 kB to 8 kB. (¢) Therefore, a microcontroller with 8 kB EPROM
and 512 B RAM is required, and an external flash (or 5 V EEPROM) of 128 kB and external RAM of 4 to
64 kB are required with the system. For acquiring image or voice data on-line, RAM buffer requirement
can be 512 MB.

®) Case Study of the Data Acquisition Systems for the ECG waveforms
Consider another data acquisition system, which is used for recording the ECG waveforms. Let
each waveform be recorded at 256 points. A 64 kB flash will be required for 256 patient records.

8051 and Advanced Processor Architectures, Memory Organization and Real-world Interfacing m

Table 2.8 Required memory in four exemple of systems

Memory Case 1: Case 2: Case 3: Case 4: Case 5:
Required Automatic Data Multi-port Voice Digital
j Chocolate Vending Acquisition Network Transceiver, Processor or Camera or
Machine or System Fast Switches, Routers, Video processing Voice
Real time Robotic or Multi channel Fast or Mobile Phone Recorder
Control system or Encryption and or Pocket PC System
decryption system System
Processor used Micro- Micro- Multiprocessor Microprocessor ~ Micro-
’ controller controller system + DSP-based processor
Multiprocessor
system
Internal ROM or 410 32 kB 8 kB - - -
EPROM
Internal EEPROM 256 to 512 B 256t0 512 B - - -
Internal RAM 256t0 512 B 256t0512B - - -
ROM or EPROM No No 64 kB 64 MB 64 kB
device
EEPROM or No 64 to 128 kB 512B 32kBto 256 kB Flash
Flash device' 2108 GB 16 MB to
: memory stick 8GB
memory
stick
RAM device No 64 kB to 64 kB to S12 MB 8§ MB 1MB
512 MB
Parameterised No No Yes for IO buffers. -
distributed RAM 4 kB per channel
Parameterised No No Yes for MAC unit, .-
Block RAM Dialing 10 unit

Note: "Flash with a boot block can be used to store the protected part of the boot program in its OTP sector(s).

Exaiﬁple 2.22 Case Study of a multichannel Fast Encryption cum decryption

.3}
i

1.! Consider a sy

Transceiver Systems

stem with multiple channels. There are encrypted inputs at each channel. These are
- decrypted for retransmission to other systems.

2.. EEPROM is required for configuring ports and storing their statuses. Assume 16 channels. 512 kB
, will suffice for a 16 B need per channel.
3. ?Encryption and decryption algorithms can be in 64 kB ROM.

Embedded Systems

4. Multichannel data buffers are required before the caches process the algorithms. Therefore, 1 MB to

512 MB RAM may be required. !

5. 10 buffer storage of 4 kB per channel is needed. If a parameterised distributed RAM is h

employed at each channel, the system performance will be increased.

6. The system will thus need the following memory: 64 kB ROM, 512 B EEPROM, 1 MB

RAM and 4 kB per channel distributed parameterised RAM.

Example 2.23 Case Study of a Mobile Phone system

1.

As voice compression—decompression and encryption—decryption algorithms and DSP prooe’&sing
algorithms are required, the ROM image will be large. Assume it is can be taken as 64 MB. Now if
the ROM image is stored in a compressed format, a boot-up program first runs a decompression
program. The decompressed program and data first load at RAM and then the application program
runs from there. The RAM is obviously of bigger size in these systems. ROM can be

reduced as per compression factor.

A large RAM is also needed. It can be taken as 8 MB for storing the decompressed program and data
and for the data buffers.

The phone memory for entering important telephone numbers can be in a 16 kB flash or EEPROM.
A flash of 64 kB can be taken for recording messages, MMS pictures. A memory stick using
SDIO port of 2 GB or 8 GB is required for recording songs and videos. ‘
Parameterised block RAM at MAC subunit and other subunits will improve system
performance.

The system will thus require memory of 1 MB ROM, 16 kB EEPROM, 16 kB Flash, 1 MB
RAM and block RAM at the subunits.

Example 2.24 Case Study of Digital Camera and voice recorder

1.

Assume a low-resolution uncoloured digital camera system. Images are to be recorded GIF (graphxc
image format) compressed format. (a) Assume that an image has a Quarter-CIF (Common Intermediate
Format) of 144 x 176 pixels. Then, 25,344 pixels are to be stored per image. Assume that compression
reduces the image by a factor of 8 then 3 kB per image will be needed. Flash required will be 0.2 M for
64 camera images. Therefore, a 256 kB flash will be required. (b) A 64 B digital uncoloured itiiages
camera system will thus be estimated to need memory of 64 kB ROM, 256 kB flash and 1 MB RAM.
High resolution 6 M pixel digital camera need 16 MB 256 MB flash and 2 to 8 GB memory stick.
Assume a voice recording system. 64 kbps are required, assuming an 8-bit pulse code modulation of
the voice signals. [Average frequency is taken as 8 kHz.] Assume voice data compression factor of
8, 1 kB flash is required per second. A is MB flash 4 required for each hour of recording. ‘

. Since voice compression—decompression algorithms have to be processed, the ROM image will be

large. It can be taken as 1 MB. Using compression techniques, a 64 kB ROM can store the RQM
image.
The RAM needed is large for storing the decompressed program. It can therefore be esumated
as 1 MB. :
A one-hour voice recorder system is estimated to require memory or 64 kB ROM, 4 MB
flash and 1 MB RAM.

8051 ahd Advanced Processor Architectures, Memory Organization and Real-world Interfacing @

§ Simple systems like automatic chocolate vending machines or robots needs no external memory. The
de?sagner selects a microcontroller that has an on-chip memory required by the system. The data
acquisition system needs EEPROM or flash. A mobile phone or pocket PC or digital camera system needs
1 MB plus RAM device and 64 kB to 256 kB internal flash device plus memory stick. Image or voice or
viiieo recording systems require a large flash memory in the form of memory stick of 2 GB to 8 GB.

Summuary

. 8051 microcontroller has Harvard architecture for memory, has special function registers, internal RAM and ROM
of flash. It has two timers, and SI interface for the half duplex synchronous and full duplex UART communication.

s Bus signals interface the processor, memory and devices. The interface circuit takes into account the timing diagram
with reference to processor clock output. The circuit uses the processor control, address and data bus signals and
takes into account the timing diagram for the bus signals. A PAL-, GAL- or FPGA-based circuit, called glue circuit,
provides a single-core or chip solution for the latches, decoders, multiplexers, demultiplexers and other necessary
interfacing circuits.

 The buses interface to stepper motor, LCD controller, A/D, D/A circuits using ports and appropriate interface
circuit.)

o An embedded system hardware designer must select an appropriate processor, appropriate set of memories for the
system and design an appropriate interfacing circuit between the processor, memories and IO devices. This is
done after taking into account the various available processors, structural units and architecture, memory types,
sizes and speeds, bus signals and timing diagrams.

* The structural units of a processor that interconnect through a bus are memory address and data registers, system
and arithmetic unit registers, control unit, instruction decoder, instruction register and arithmetic and logical unit.
Registers in processor also called register set(s) window(s) or file(s) are important and are meant for various
fanctions such as context switch to process another task or ISR.

» Advanced processors have following additional structural units—prefetch control unit, instruction queuing unit,
caches for instruction, data and branch transfer, floating point registers and floating point arithmetic unit. Pipelining
and superscalar features and caches in the processors are used in high performance systems. MIPS or MFLOPS
ar Dhrystone per second define the computing performance. The goal is to provide optimal computing performance
at the least cost and power dissipation.

. ARM SHARC, TigerSHARC and DSPs processors are used in high performance computations.

. A system needs ROM and RAM memory of various types and address spaces. Various forms of ROM are masked
ROM, PROM, EPROM, EEPROM, flash, boot-back flash and memory stick or card. Basic details of the memories
are the addresses available, speed for read and write operations, and modes of memory access.

» The Processors and Memory selection can be done using appropriate design tables.

v ﬁach 10 device has a distinct set of addresses. Each IO device also has a distinct set of device registers — data
registers, control registers and status registers. At a device address, there may be more than one register. The
device addresses depend on the system hardware. Based on the memory map with 10 device addresses, a locator
program is designed to locate the linked object code file and generate a ROM image.

=]

Embedded Systems

Absolute addressing mode

Accelerator

Accumulator

AHB
ALU
AMBA

Arithmetic unit registers

ARM

ARM?7 and ARMY

Asynchronous serial
communication
Auto index

Base addressing
Baud Rate
Boot back flash

Branch transfer cache
Burning-in
Bus interface unit

CISC

Code Compatibility

£
‘ Keywords and their Definitions

{
1
Define all the address bits in an instruction. “

ASIC, P core or FPGA, which accelerates the code execution and whléh may
also include the bus interface unit, DMA, read and write units and regxswts with
their cores. :

A register that provides input to an ALU and that accumulates a resultmgf Y
from the ALU. &

A high-performance version of the AMBA used in ARM processors. ;‘.?
A unit to perform arithmetic and logic operations as per the mstructlous}

An established open source specification for on-chip interconnects Lhﬂ%serves
as a framework for SoC designs and IP library development. |
Registers that hold the input and output operands and flags with the ALD .

A family of high performance reduced code density ARM7, ARM9, ARM10
and ARM 11 processors, which are used in embedded systems as a chlp. br asa
core in an ASIC.

Two families of RISC processor for an SoC from ARM and Texas Ins nts,
also available in single-chip CPU versions and in file versions for em| ing at
a VLSI chip. ARM 7 has Princeton architecture for the main memory and MM9
has Harvard Architecture. !

Data bytes or frames not maintain uniform phase differences in serial * %
communication. : f

When after executing an instruction, the index register contents c?nange
automatically. u
Addressing an address from where a first element of data structure stam
Rate at which serial bits are received at the line during a UART commum;::on.

A flash with a few sectors similar to an OTP device, to enable storage of bootup
program and data. *
Cache to hold in advance the next set of instructions to be executed pn the

program branching to this set.

A process in which bits are modified from all s in erase form to the ls and Os
in a device as per input 1s and Os.

A unit to interconnect the internal buses with the external buses for control
address and data bits.

A complicated Instruction Set Computer that has one feature that providiq abig
instruction set for permitting multiple addressing modes for the SOR% and

destination operands in an instruction. The hardware executes the instfuctions

in a different number of cycles, as per the addressing mode used in an insthjction
o

Usability of codes by various generations of a family. !

805‘§ :and Advanced Processor Architectures, Memory Organization and Real-world Interfacing r1.';3

Code composer studio

D&!’ice address
DMe programmer
D?u'ce programming
Me register

+
i

Dévice

t a
Mstone
x

chztal Filtering
Direct address

DMA

An IDE for TI DSP-specific code composing which provides an environment
similar to MS Visual C++. It consists of the following: multilevel (C as well as
DSP assembly) debugger, compiler, assembly optimiser, RISC-like assembly
codes and RISC-like scheduling for optimum performance and efficiency probe
points, file IO functions, comprehensive data visualization displays and GEL
scripting language based on C.

A unit for digital coding after ADC and other operations and decoding to get

analog signals using DAC and other operations. It is used in processing audio or
CCD device pixels and video signals.

To control and sequence all the processing actions during an instruction execution.

Direct access arrangement; for example, a typical DAA serial in and out port
directly transferring the analog input and output using up to 1 master and 7
slave CODECs.

Cache to hold the data in content-addressable memory format.

Discrete Cosine Tranformation function used in a number of DSP functions, for
example, the MPEG2/MPEG4 compression.

A device address used by processor to access its set of registers. At each address
there may be one or more device registers.

A system or unit for programming a device by burning-in ROM image.

Programming of bits by burning-in a memory of microcontroller or in a PLA,
PAL, CPLD or any other device.

A register in a device for byte, word of data, flags or control bits. Several device
registers may have a common address.

A physical or virtual unit that has three sets of registers: data registers, control
registers and status registers, and which the processor addresses it like a memory.

A benchmarking program that measures the performance of a processor for
processing integers and strings (characters). It uses a benchmark program
available in C, Pascal or Java. It benchmarks a CPU, not the performance of the
10 or OS calls. 1 MIPS = 1757 Dhrystone/s.

A filter for the signals that use DSP functions.

A directly usable address in an instruction. It is usually the address on a page in
the memory.

A direct memory access by a controller internal or external. DMA operations
facilitate the peripherals and devices of the system to obtain access to the system
memories directly, without the processor controlling the transfer of the bytes in
a memory block.

Dynamic RAM, which refreshes continuously by a device called DRAM refresh
controller. Once programmed, it auto reads and writes the same set of bits
repeatedly by scanning the DRAM memory cells.

A process of eliminating echoes.

A signal received after a delay and which superimposes over the original signal.
For example, in a hall or at the hills we hear the original sound as well as the
echoed sound. Similarly, there may be echo in electronic signal.

EDA
EEMBC
EEPROM

EPROM

Erase time
Fixed point arithmetic

Flash
Flash

Floating point arithmetic

High-level language support

Index register
Instruction cache
Instruction decoder

Instruction format
Instruction queuing unit
Instruction register
Instruction set
Instruction set

Interface circuit
Internal bus

Java Accelerator
JVM

MAC unit

Master

Embedded Systems

A powerful tool for Electronic Design Automation. E #
EDN Embedded Benchmark Consortium.

A type of memory each byte of which is erasable many times and gthen
programmable by the instructions of a program as well as by a device progran'imer

'

A type of memory that is erasable many times by UV light exposuze and
programmable by a device programmer. g g
Time taken for device erasing.
Arithmetic using signed or unsigned integers employing processor reglstqrs or
memory. ;

A memory in which a set of sectors erase simulatenously. !

A type of memory in a sector of bytes that is erasable many times (maxtmum
~10000) in a flash at the same instance in a single cycle. Each erased byte is
then programmable by the write instruction of a program as well as by a device
programmer. :

Arithmetic using processor registers or memory, where the decimal num:bers
and fractional numbers are stored in a standard floating-point representatifpn

A supporting unit for given processor structure that facilitates program codmg
in C or other high level languages and enables their running like machine cpdes
by an internal compilation. i

A register holding a memory address of a variable in an array, queue, tab‘e or
list. !

A cache to sequentially hold the instructions that have been prefetched for
pipeline base parallel execution.

The circuit to decode the opcode of the instruction and direct the control umt
accordingly.

Format of expressing an instruction.
A unit to hold a queue of instructions and place these into the cache.

A register to hold the current instruction for execution.

A definite set of executable instructions in a processor. .
i

A unique processor-specific set of instructions.

A circuit consisting of the latches, decoders, multiplexers and demultipleﬁars.

A set of paths that carry in parallel the signals between various internal structural
units of a processor. Its size is 64-bit in a 64-bit processor.

An accelerator that helps in the execution of Java codes faster than a JVM

Machine codes that use the compiled byte codes of a Java program and nm the
program on a given system.

A unit used in DSP operations for fast calcuation of Z[ax, + (b; yj)] or smplar
expressions.

A processor, device or system which synchronously or asynchronously con&ols
the output to several different processors, devices and systems called sla,i/es.
|

